
Prod,.ictivity Engineering in the UNIXt Env'-onment

o6 %
(V) %

Design and Implementation of a CMOS Chip for Prolog Ze

Technical Report

~S. L. Graham

Principal Investigator

(415) 642-2059

O

4,o

"The views and conclusions contained in this document are those of the authors and .

should not be interpreted as representing the official policies, either expressed or implied, .4

of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987 -4,.

DTIC '
Arpa Order No. 4871 -T- E

JUL2 5 1988

tUNIX is a trademark of AT&T Bell Laboratories

2LiZ . .. L

for. p fox

-- , ,. "..........

DISCLAIMER NOTICEe
or

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

1V~

Io

SECURITY CLASSIFICATION OF THIS PAGE ' ________________________________

REPORT DOCUMENTATION PAGE
la. REPORT SE(.A.RITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassifie4A________________________I .. '
2a. SECURITY ('AISIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILIT OF REi ORT

2b. DECLASSIFICATION / DOWNGRADING SCELiEte

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Regents of the Uiest (if applicable) SAA
of California SAA

6c. ADDRESS (0ty6 State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Berkeley, California 94720 Space and Naval Warfare Systems Command
Washington, DC 20363-5100 1

Ba. NAME OF FUNDING/ SPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
DARPA I_______

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. INO. ACCESSION NO.

ll. TITLE (include Security Classification)

DESIGN AND IMPLEMENTATION OF A CMOS CHIP FOR PROLOG

12. PERSONAL AUTHOR(S) _

*Vason P. Srin Jerric V. Tam, Tam M. Nguyn. Bruce K. Holmer, aeNVi .Dsan
13a. TYPE OF REPORT 13b. TIME COVERED 14. flATC f~ REPORT (Year, Month, Day) S. PAGE COUNT
technical IFROM _ ___TO ____ * March 1988 12

16 SUPPLEMENTARY NOTATION

COSAT; CODES j18. SUBJECT TERMS (Continue on reverse if necessary and identify by (otck nun OerJ
FIELD IGROUP ISUB-GROUP

9ABTAT(Continue on reverse if necessary and identify by block number) 1

Enclosed in paper.
.%

20, DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION X '

OUNCLA,SIFIEDIUNLIMITED 0 SAME AS RPT. CDTIC USERS unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code)2cOFC SYMBOL N'

DO ORM147,8. MA 83APRediionmaye ued nti exausedSECURITY CLASSIFICATION OF THIS PAGE %,~
All other editions are obsolete.

-~. Id.-

p..,

4

DESIGN AND IMPLEMENTATION
OF A CMOS CHIP FOR PROLOG

Vason P. Srini, Jerric V. Tam, Tam M. Nguyen,
Bruce K. Holmer, Yale N. Patt, and Alvin M. Despain

Computer Science Division
University of California, Berkeley, CA 94720 ,

X.ABSTRACT

We have designed and fabricated a high performance VLSI chip for executing Prolog programs

using a 1.4 micron CMOS technology with two layers of metal. This chip implements a tagged architecture,0

with hardware support for five stacks. The 32-bit data path of the chip contains a fast ALU, 64 registers in

four groups, five counters, and six non-master/slave registers. The control is microprogrammed and uses a

512 X 160 bit ROM with four pages for fast microbranching. The chip operates at a cycle time of 100 ns

(worst case) and has a size of 10 mm X 9 mm. A semicustom design methodology employing Mentor and ."

NCR tools has been used in this design. The challenges involved in the design, verification, routing, and

fabrication of the chip are described.

,".5%

, S..X

'5%,;

Table of contents
S

1. Introduction
2. Microarchitecture
3. Datapath

- Bus Design
- Alu Design
- Counter Design
- PDL and Exception Handling
- Register Design
- Static Bus
- Register Groups
- Collision Detection .

4. Microcontrol Design
- Status

5. Rom, Mir, and Instren Design
- ROM

- Microcode generation
S

- MIR design
- INSTREN Design

6. Design Verification
%

- Functional Simulation
- Timing
- Timing Simulation

7. Physical Level Design 'r.c<-.-n,

- Cell Routing
"O-"

- Block Routing 6

- Analysis
- Global Routing

8. Conclusion _..v.

9. Appendix AessAon Fr
N7C $ A&f L

NT. q 5.t , 9 I,? 3 IT.k ., %L)71', TAR

j,- 3D -4

.r . . . -- ,

. . .A v1 ..

List of Figures

,P.

1. PLM System
2. Top Level View of VLSI-PLM Chip
3. Stacks of the Data Space
4. Block Diagram of the Microarchigecture .4
5. Floorplan of a bit-slice of the chip
6. ALU's Top Level Diagram
7. Counter Block's Top Level Diagram
8. PDL Block's Top Level Diagram
9. MDR Block's Symbol
10. MDR Block's Details
11. Register Files's Details
12. Block Diagram of the Microsequencer
13. Circuit Diagram of ROM
14. Timing Diagram of ROM
15. Pinout of the Chip
16. Block Diagram of the Design Verification Process
17. Layout of the Chip
18. Environment Frame
19. Choicepoint Frame
20. Data Representation
21. State Diagrams for the Instructions V
22. Block Diagram of the RTL Simulator
23. Sample Input to Gate Level Simulator
24. Sample Output of Gate Level Simulator

--.5'.t

:::-:

S

S'S S-'L.
:'3 ."=

: -; -. 'r % e- '. - -. -- ; g £2 ¢ z¢ J-2¢g J ".,"..*,,-..',.',,',., v...

1. INTRODUCTION

The current trend in computer architecture is to develop high performance architectures that execute

programs used in artificial intelligence (Al) in general and expert systems in particular. Lisp and Prolog

are two of the major languages used by the Al community. The Aquarius project at Berkeley has been

addressing the problem of designing and building high performance processors for Prolog since 1983.

Three Prolog systems have been designed and two of them have been constructed. The three Prolog sys-

tems are coprocessors to a host such as the NCR 9300 system or the SUN workstation. They are different

implementations of the Warren Abstract Machine [10,11]. The Warren Abstract Machine involves

translating Prolog programs to an intermediate language, called W-code, and from there to the machine

language of the host processor. Machine instructions are then interpreted by the host microcode to control

the data path of the host microengine. _

Fast execution of Prolog programs requires architectural support for procedure calls, unification, and

backtracking. Although hardware support for procedure calls is available in many of the commercially

available 32-bit microprocessors, not much was known about supporting backtracking and unification in

hardware until 1983. Since unification requires knowledge about the data types of the terms being unified,

a tagged architecture is almost a necessity. Otherwise, the execution of Prolog programs is slowed down

significantly. A tagged architecture for Prolog has been developed at Berkeley based on the Warren -

Abstract Machine (WAM) [10, 11]. The first system developed at Berkeley translates the instructions of

the abstract machine [11], called W-code, directly to the microcode of a special purpose processor

designed for interpreting W-code. The architecture for the special purpose processor, called Prolog

Machine (PLM), has been designed by Dobry [4]. The PLM includes only those features that are deemed

necessary by the the results of extensive simulation. The PLM has been constructed using TTL parts and

runs at a cycle time of 100 ns. The PLM is connected to a host processor, an NCR 9300 system, to do 1I/O,

floating point calculations, and diagnostics. The performance of PLM for benchmark programs and com-

parison to other systems have been described by Dobry 15).

The second system generates vertical microcode for a general purpose processor, the NCR 9300 sys- S

tem, from W-code [7]. Three significant pieces of software are used in transforming Prolog programs to

executable NCRJ32-000 microcode: a Prolog compiler, a microcode compiler, and an assembler. The -

% .

A0

2

study showed the importance of tags and special purpose architecture and compared the performance of 0

NCR/32 (1], with that of the TrL implementation. 1.W

The third implementation is a VLSI design of PLM. This report describes the design of a 32-bit

microprocessor which combines the architectural features of the PLM with a static CMOS implementation

to create a processor with high regularity, low power dissipAtion, and a small instruction seL The design

has been implemented using a semicustom methodology with standard cells supplied by NCR corporation.

Macrocells such as ALU, register file, counter, and ROM have been designed and used in the processor.

The chip is constructed using a 1.4 micron feature size CMOS process with two levels of metal for inter-

connection. The chip requires 120 pins and has a size of 10 mm X 9 mm. It is housed in a pin grid array

package with 192 pins and dissipates 2 watts. The chip is designed to be a coprocessor for workstations

such as SUN-3 and NCR-Tower. Since Prolog programs are memory intensive, a cache is assumed

between the chip and the host processor with a read time of 100 ns for cache hits. The availability of a

cache allowed us to move the maintenance control unit and the instruction prefetch unit off chip. The chip A.A

is designed so that it can be interfaced to standard buses such as VME and MULTIBUS-lI. A block

diagram of a system using the chip is shown in Figure 1.

The chip design and simulation have been complex because of the nature of Prolog, the 100 ns cycle -.

time, and its large size. The need to support backtracking and unification in hardware, and the use of cdr-
coding for lists and structures have contributed to the complexity of the architecture. Although the PLM "

architecture has a small number of instructions (< 60), many (> 16) of which require several (> 9) cycles to

execute. The data path has to support six simultaneous register transfers and communicates address and .

data to memory in a single microcycle. This requires a minimum of 8 buses. We had to tradeoff space to

achieve the 100 ns cycle time. For example, instead of using 8 buses that would run the length of the chip

to support the register transfers, we used II buses of which three run the entire length of the chip. This9

approach reduced the bus capacitance without taking extra area for buses. The complexity of the input and

output parts of blocks is also reduced. It also increased the number of possible parallel transfers within a

single microinstruction. The price we paid for ai;, -.i 8 extra bits in the microinstruction. The second layer

metal in the CMOS process is used for the buses, VDD, and GND. The details of the PLM architecture are

shown in Section 2.

**qI ~ % * ~ %~ % %'~' '-." .-.-- '0,.

3

Achieving the 100 ns cycle time presented many challenges. For example, the critical path in the

data path contains a register file, an ALU, and a register. To achieve the 100 ns cycle Lime. a 16 word regis-

ter file with a read Lime of 30 ns and a 28-bit ALU with an add/subtract time or 40 ns ame needed. The

microsequencer's critical path contains a ROM and next microaddress calculation circuiL This requires a

ROM (512 X 160) with a read access time of 40 ns. The next microaddress must be generated in 42 ns

based on the status information supplied by the data path. Furthermore, the logic in more than 300 LSI and

MSI chips occupying two hex size boards in the TTL version of PLM have to be put in a single chip. The

top level view of the chip is shown in Figure 2. It contains the major units of the chip and the logical con-

nections between the units. The design and implementation of the data path is described in Section 3. Sec-

tion 4 describes the microsequencer. The design of the ROM, microinstruction register, and the generation

of interface signals are discussed in Section 5. .. ,.-,

The major challenges came in the verification of the design and routing the chip. The design

verification process is described in Section 6. A hierarchical methodology is employed by NCR in routing

the chip. The size of the design (> 20,00(gates) presented significdnt challcngc in routing the chip. It is

described in Section 7.

To simplify the debugging process, static circuits are used everywhere except the ROM. The ROM ... -

precharges output lines to achieve the 40 ns access time. The buses used in the chip arc alzo st'tic A r

number of features have been added to support testing. For example, the microinstruction register (MIR) ',

and the registers containing the machine status are LSSD registers. Some generic microinstructions have

been added to read the contents of registers and to set values to them. Seven pins have been added to the S

chip for testing. . ,

The chip uses a two phase nonoverlapping clock. The clock skew is controlled by running the two

clock phases through the length of the chip using 20 micron wide metal lines and distributing the phases

locally in each of the blocks. Overall, the semicustom design methodology allowed us to achieve the

deiied performance by redesigning the macrocells in some of the blocks without affecting others. The

design titne has also been reduced because of the use of Nwtdiid cells. However, changes ha,,. u- be niadc

to the commercially available tools before they could be used in the design of the chip. This caused.'k'\

significant delays in simulation and physical design.

N* N
J&~.,

4

-

2. MICROARCHITECTURE

The microarchitecture of the chip contains hardware for manipulating five stacks. These stacks form

the data space of a Prolog process. The code is kept in a separate area. The separation of code and data is

intended for the efficient management of memory, changing clauses in the code space, and fast access to

data bases. The organization of the data space and the pointers to manipulate the stacks are shown in Fig-

ure 3. The control stack (hereafter called "the stack") is the area in memory used for storing control infor- I'

mation. Two kinds of objects may appear on the stack: environments, and choice points. An environment Mrs

represents the saved state of a Prolog clause: it contains pertinent register values, and what are known as

permanent" variables. Permanent variables are variables needed by more than one goal in the body of a

clause; they must be saved so that succeeding goals can access them.
S

A choice point is a group of data words containing sufficient information to restore the state of a •'

computation if a goal fails, and to indicate the next clause to try. Choice points are placed on the stack by

special instructions when entering a procedure containing multiple clauses that can unify with the current

goal. Choice points support backtracking, a feature unique to Prolog. Choice points contain the pointers '

shown in Figure 3, state registers, argument registers, and continuation pointer. The choice point frame

and the environment frame are shown in Appendix 1. -.

The heap is the area of data memory useo for the storage of lists and structures, which are too

cumbersome to be kept in environments on the control stack. It is allocated incrementally like a stack, and ',

dea~located in variable size blocks. %

The trail is an area used for keeping track of variable bindings. When a variable becomes bound ,

during the course of a Prolog program, it may become necessary to undo the binding when backtracking is I-%.

done. Thus some method is needed for keeping track of all bindings that are to be undone when the current

goal fails so that the variables they refer to can be unbound again. 7

The PDL is a small stack created for the unification of nested structures and nested lists. The

JI2space is an area of memory used for global variables, system tables such as symbol table, process table,

and page table. It will be used extensively in the execution of concurrent processes resulting from AND

parallelism and OR parallelism. %

%- *

71

5

The data and code memories are word-addressable with 28-bit addresses. In a 32-bit word, 28 bits

are used for storing data and addresses. The most significant four bits are for tags: 2 bits for data types, 1

bit for cdr-coding, and I bit for garbage collection. Since tags are not used in arithmetic operations, the *

ALU performs 28-bit add/subtract. The data types and their representation are shown in Appendix 1.

The pointers needed to manipulate the stacks are also shown in Figure 3. In addition there are argu-

ment registers, temporary registers, and 16 registers for storing constants. Many of the stack pointers are

actually 28-bit counters. This allows further concurrency in the microarchitecture since increments and

decrements need not go through the ALU. A block diagram of the microarchitecture is shown in Figure 4.

The instruction set supported by the microarchitecture contains ten classes. They are shown in Table

1. The dynamic frequency count of these instructions for a class of benchmark programs, maximum 0

number of data transfers, and the execution cycles are also included in Table 1 to show their relative impor- ,.,

tance. Additional details can be found in Dobry [S]. The procedure control instructions create choice

points and manage them. The indexing instructions act as filters to prevent the execution of clauses which

the compiler can determine will not unify with the invoking goal. The clause control instructions sequence

between subgoals in the body of a clause, invoke builtin functions, create an environment, and remove an

environment from stack. The get instructions unify the calling subgoal's arguments with the head of an %

invoked subgoal. The put instructions load the argument registers prior to invoking a subgoal. The unify

instructions construct structures on the heap (write mode), and unify the structures (read mode). The arith-

metic and logical instructions perform arithmetic operations on 28-bit numbers and logical operations on

32-bit numbers. The jump instructions look at the state of equal and less than flags and jumps to a specified ,

location. The load and store instructions read from memory and store in memory. The miscellaneous

instructions is the last group and allows booting the system, reseting the stack pointers, and halting the pro-

cessor by looping on a microstate. S

In addition to the above instructions, there are six fundamental operations (primitives) to suppol .

Prolog. They are fail, trail, dereference, decdr, bind, and unify. They are not available to the programmer.

The fail operation restores the machine state when a failure occurs during unification. The trail operation S

manages the trail stack during binding if a variable is to be trailed. The dereference operation follows the

chain of pointers which occur due to binding of variables to other variables during unification. The decdr "

• 1
€'d%

NO>*b

6

operation supports cdr-coding of lists and structures. It is used to fetch the next element from a list or struc-

ture. The bind operation stores the data value at a given address. It may call the trail operation to see if the

binding must be trailed. The unify operation unifies arbitrary Prolog items, binding variables as required. It

uses the PDL during the unification of nested lists and structures.

A simulator has been written in C for the microarchitecture. The simulator accepts W -code and pro-

duces the state of the architecture for each cycle. The state information includes the contents registers

MDR, R, T, TI, MAR, S, N, and the condition codes. The simulator can also produce the stimulants for the 0

QUICKSIM simulator of Mentor's IDEA system for the logical simulation of the chip. The structure of the %

simulator is described in Appendix 1.

3. DATA PATH DESIGN AND IMPLEMENTATION

A hierarchical design methodology employing semicustom tools was chosen since we wanted to do a

single chip implementation of the microarchitecture in the shortest time possible. The availability of 1.4

micron CMOS technology with two layers of metal and commercial design tools (Mentor Graphics' IDEA

Station), and the support from NCR for routing and fabricating the chip were the additional factors in our

choice of the methodology. The logic level design and simulation, timing simulation, and architecture

development took place in Berkeley. We used NETED and SYMED programs of IDEA station to do the

schematic capture. NCR-Fort Collins designed the cells and the macrocells for the chip, routed the chip

and fabricated it. The details of this physical design are described in Section 7.

The design of the chip involved three major parts: data path, microsequencer, and the support circui-

try. We expected the chip area to be dominated by the data path and so concentrated on making it regular.

Since our goal is not just to come up with one processor for Prolog, we also concentrated on designing the

data path so that parts of it can be reused in other designs. •

The 32-bit wide data path is dominated by registers and counters. This can be seen in its floorplan

for a bit-slice, shown in Figure 5. Each block in the data path can transfer data to many destinations simul-

taneously. We use tristate buffers controlled by a microbit for each destination. Each block has a multi- 0

plexer to select one of the buses as its source. There is a microbit for each source. The modular design of

the blocks simplified checking and routing. Since the bus delays have to be reduced as much as possible to S..,.

_ I

7N

allow enough time for the activities in a block, considerable effort went into the design of buses.

BUS DESIGN

The total number of buses and the length of each bus are two important criteria in the bus design for

the chip. If the bus length is kept to a minimum bus transfer time can be reduced because of reduced bus

capacitance. The number of buses affects the chip area in the data path. Reduced number of buses also

decreases the routing complexity and decreases the area needed for the buses. The placement of the blocks

in the data path and the number of simultaneous register transfers in the microstates determine the number

of buses and their length.

We analyzed the register transfers in microstates and the eight buses used in the "TL version of PLM

to come up with an initial placement for the blocks in the data path and the number of buses. Two different %

bus designs have been proposed and evaluated. The first bus design kept the buses used in the "TTL design.

Three more buses are added to maintain compatibility with the microstates of the TTL design, diagnose the
0

chip, and to support future additions to the microcode while implementing some of the built-in functions.

The second proposal contained a total of eight buses. It maintained compatibility with the present micro-

states of the rTL design but did not maintain compatibility with the buses in the TTL design. We felt that ,-

this lack of compatibility could cause microstate compatibility problems in the future when new microin- 4
structions are added. So we have decided on the first design. The placement of the blocks and the eleven "''p

buses connecting the blocks are shown in Figure 5. We used a program to detect bus conflicts in each of

the microstates during the bus design. This program is a key tool to be used in adding new microstates to 0

the ROM. The second level of metal is used for the buses. Bus routing is simplified by butting the blocks

as shown in Figure 5. The top level diagram of the data path showing the connections between the blocks

is included in Appendix 1.

The design details of ALU, counters, registers, PDL, and register files are now described.

ALU DESIGN

The data path contains an ALU for doing arithmetic and logical operations. It performs arithmetic

on 28-bit numbers and compares on 32-bit quantities. The design objective is to finish the longest operation

IN
aN - -a ~ w -a a~ *~~~* '- ~ "p'~p *~~~*' - ~- - - - .*V.p 'p-., *' ! .

a. " YJ .A'A A.~\ -A

8

(add/subtract) in the least possible time using the smallest area possible. The clocking scheme allows 40 ns

after phase 0 goes low for the ALU to complete add/subtract operation. This timing constraint requires the

use of some parallel carry generation scheme. We use the P-circuit [9] with pre-conditioning and post-

conditioning 12,3] circuits to generate the carry.

The implementation of the ALU using standard cells and a semicustom design methodology imposes

some constraints on the designer. For example, the fan-in, in addition to fan-out of the basic cells should

not be large on the critical path; otherwise, the delay in the circuit would be large.

The ALU comprises four blocks: an input block transforming inputs according to the control signals, V ,

a compare block testing whether the inputs are equal, a parallel prefix calculation block generating the pro-

pagate (P) and generate (G) signals needed for carry calculation, and a sum block supplying the final

result. The top level view of the ALU is shown in Figure 6. The functions of the ALU are similar to that of

the AS 181 chip, but it uses a fast carry evaluation method to achieve high performance.

In the input block, the P and G signals for each bit are generated according to the control signal and

inputs. The compare block passes the inputs through exclusive OR gates and then tests to see if all the out-

puts are zero. The testing is done using a tree of NAND and NOR gates and is performed in parallel with

other ALU operations. We could have put the testing circuitry after the sum block, but our approach

removed the testing from the critical path. However, the alternative method would allow us to test for zero

output which might be generated from logic or increment/decrement operations. This testing cannot be -

done by our approach. There is no loss of functionality since the TITL version does not test for zero output.

Considerable amount of effort went into the design of the parallel prefix calculation block. The basic

architecture is derived from the works of Ladner and Fischer [9]. The pre-conditioning and post-

conditioning circuits invented by Despain 12] are incorporated to reduce the fan-outs in the design of the

'Aock.

NCR standard cells are used to implement the ALU and some new cells are added to optimize the

critical path. At each iteration, NCR software tools are used to identify the potential critical paths, and then

intensive SPICE simulation runs are used to obtain better estimates on the delay. We have designed an --

ALU that performs add/subtract with a worst case (VDD = 4.5V, Temperature = 80 C) delay of 37 ns.

%

Since the PLM uses the four most significant bits for tags and cdr coding, the ALU needs to separate ,

them from the real data if overflow detection is to be done. So, the ALU performs arithmetic operations

on the least significant 28 bits, while the the logical and comparison operations are done on 32-bit inputs.

However, there is still anomaly over the secondary tagging. Currently, the ALU tests for overflow from bit

28, while the secondary tagging takes place on bit 27 and bit 28. No small integer (26-bit integer) overflow

is caught since the additional logic needed to check the data type will slow down the ALU.

Since only 28 bits, instead of 32 bits are needed in the carry calculation, further optimization based

on the Q-circuit ideas proposed by Despain [31 is implemented. The general idea is to use circuits with

fewer gate delay levels to drive those with more levels, and thus try to absorb the propagation delay which

is both unavoidable and significant in MOS circuitry. The control to the ALU consists of 4 bits, S3, S2, SI,

and SO. In addition, a mode bit M controls whether an arithmetic or a logical operation is performed. A %

carry in bit (Cn) from the microinstruction controls whether the initial carry is zero. The functions imple-

mented by the ALU are shown in Table 2.

Note that there are many unused entries in the table and it is possible to do further optimization.

• ,," ,.

COUNTER DESIGN

The data path contains five counter blocks: H, H2, T. S, and MAR. These counters are important for..

high performance. Since data space and code space addresses are 28-bit wide in our architecture, the

counter blocks do only 28-bit counts. However, they can store 32-bit values. The counters are used for

pushing and popping the stacks in the data space. Each counter block contains a 32-bit master/slave regis-

ter and counting logic. A carrylookahead scheme is used to achieve a worst case count delay of 60 ns. The

28-bit counter is implemented in three stages. The first stage contains 8-bit carrylookahead circuit. The

other two sages contain 10-bit carrylookahead circuits. The carry ripples through the three stages.
.Y

Each counter can perform four functions: load in new data from the selected bus, increment by one,

decrement by one, and hold current value. The design objective for the counter is to obtain the new count-

ing value within the specified time limit, using the smallest area possible.

Our clocking scheme allows a worst case delay of 60 ns for the counting logic alone (70 ns for

counting and transfer). This timing constraint requires the use of some carry lookahead scheme. For

% ~'~F
N..

r ,I

d0 .11
efficient use of area, regularity among the 28 counting bits is desirable. We started our design from the ,

basic counting equations to examine the possible logic circuit organizations. First, we viewed the counter

as an adder; that is, incrementing is adding a positive one and decrementing is adding a negative one (in 2's

complement). Consider the following basic equations for addition with carry lookahead:

G =AB

P A OB

C =G+PC
i+1 i i i

S =A 4B 4C
i i i i

where A and B are the values to be added; G is carry generate signal; P is the carry propagate signal; C is

the carry; and S is the resulting sum.

Let A be the data currently stored in the D flip flops (DIFF), let B and C (the initial carry in bit) com-
0

bined to be the value to be added to A. For counting up, assign B=--0 and C =1 to obtain the effect of
j 0

adding a positive one. When counting down, set B =1 and C --0 to add a negative one. There is an active .
i 0

low control signal UP, which specifies the counting direction. The counter increments when UP is low and -'. -,

decrements when UP is high. By substituting UP for B,

S =A cXJP 2 4

C =A C UP+(A +C)UPi*l i i i i
s, .'--

Unrolling the recurrences for C, we get d-

C=(A A ... A)CUP+(A +..+A)UP+CUP ,
i i-I i-2 0 0 i-I 0 0 1

The equation above describes the logic of the carry circuit for an n-bit counter block with n-bit

carry-lookahead. C is the initial carry into this block and C is the carry out of this block. The resulting
0 I

values are stored in the sum bits S throughS . The logic circuit of this n-bit block is made up of 2 dif-
0 n-I -w,

ferent bitslices, each bitslice contains the suming logic, the DFF to store the result, and the generation of %

carry into the succeeding bit. The carry generation logic for the bitslices are shown below.

40
,",

%'"

Bitslice type 'a'. used for bit 0:

cnand C *UPandline =A A ,,
, 0

orline = A1 0

C =cnand*A UP*A C -",

o o o "):' -

Bitslice type 'a', used for bits i I to n-1:

andline = andline A

i10

orline = orline +A

W~ i i
C = cnand (andline C (orline UP)

1 0 1 0 i+

An n-bii block consists of one bislice 'a' and n- bit slices V. We call each such block a stage.

The 28-bit counter is made up of three blocks, where the values for n are 8, 10, and 10, respectively, with,,

the 8-bit block being the least significant. The carry out of the first stage is connected to the carry in of the

2nd stage, and the carry out of the 2nd stage is in turn tied to the carry in of the 3rd stage. The top level

view of the counter is shown in Figure 7.

The critical paths in this circuit are orline which ORs all the bits of A (the andline is similar but

operates a bit faster), and the carry propagation from one stage to e next. The counter is broken up into

stages to take advantage of th e tse ' nd ine is local to each of the three stages, and since values of A

are available immediately, these lines operate in parallel. There is some delay associated with driving the

control signal UP through all 28 bits (also, UP is the carry into the first stage). These two delays are syn-•

chronized so that the control signal will be stable at about the same time as the orline into the last bit of the
frst stage, which together generate the carry out of the first stage. From this point on, we only have to be

concerned about the delay of generating the carry out of the 2nd stage into the 3rd stage. In short, the logic

is constructed in a way which minimizes the number of gates in the carry path.',,

With respect to the VLSI methodology, our counter design has a number of advantages. First, the

layout is fairly pa ith circt arent types of bitslices, using 3 of one type and 25 of the other.

Second, very simple 2-input and 3-input gates (standard cells) are used, which require much smaller area

.

and switch ae ante ofhe fa han-in equivalents. And finally, routing is significantly simpler because
a d, t. T

AL- ~ ~ ~ ~ , V1I.1717v,-

12 v'

the number of inputs and outputs of each bitslice is fairly constant, and because most of the inputs come

from the outputs of the immediately preceding bitslice.

PDL AND EXCEPTION HANDLING

The Push Down List (PDL) is a LIFO data structure which has 16 locations of temporary storage for

the pointers to the Prolog structures. It has two parts, PDL left (PDLI) and PDL right (PDLr). Each part is

32 bits wide. During unification of structures, each location contains a pointer to the next deeper nesting

level of the structure. Although we believe that it is highly unlikely that structures in Prolog programs are

nested deeper than 16 levels (in our benchmarks, they are nested no more than 10 levels deep), we have

designed the architecture to detect and to handle the potential overflow. The PDL address calculation logic

(PDLACL) in Figure 5 manages the PDL. The top level diagram of PDL is shown in Figure 8.

The PDLACL has two markers, called TOP and BOTTOM. As their names suggest, TOP and BOT-

TOM mark the top and the bottom of the PDL, respectively. Both markers are initialized to zero at the start

of the structure unification. During normal operation, a PDL push increments TOP (modulo 16) before

storing data into PDL at TOP, and a pop decrements TOP after the data from PDL at TOP has been read. .N

In our scheme, an overflow occurs when TOP and BOTTOM both point to the same place in PDL and there

is an auempt to write into it (a push operation). When this happens, a hardwired address to the overflow

handler routine in the control ROM is selected instead of the normal next microaddress. The overflow
" - ',-"-"'

handler routine increments the BOTTOM marker, moves one location (both PDLI and PDLr) from the PDL

at the BOTTOM out into the stack in the data space in memory, and jumps back into the normal unification S

microcode. Upon exiting the handler routine, BOTTOM now points to one location above TOP. If a push .

operation is done after an overflow without an intervening pop, another overflow will occur and BOTTIOM

will again be incremented by one.

After an overflow has occurred, PDL pops will function normally as TOP will be decremented * *

(modulo 16) each time. When TOP is again equal to BOTTOM and a PDL read request is present, PDL .N.

undcrflow signal becomes active and the address to the underflow handler will be selected as the next

microaddress. The underflow handler restores one location of the PDL (both PDLI and PDLr) from the

stack, and decrements BOTTOM pointer.

A " "Nd

13 is

There is a single bit D flip-flop to remember that a previous overflow has occurred. This bit is set

when the first overflow occurs and remains set until all overflow data in stack has been restored into PDL,

at which time it will be cleared by the underflow handler.

Since we believe that overflow rarely occurs, the detection and handling mechanisms are designed to

require minimal additional hardware and microcode, and such that performance in normal situation would

not be affected. In terms of additional hardware, the scheme presented above requires four latches, four 2-

input MUXs, one D flip-flop, and about a dozen simple gates used in the comparison and decoding logic

for the control signals from MIR. If the PDL does not overflow, all instructions operate at the same

number of clock cycles as the TTL version without any exception handling. The detection mechanism is

transparent and requires no additional microstates. In the event of an overflow or an underflow, approxi-

mately ten extra cycles are required for the exception handler to execute.

REGISTER DESIGN

The data path contains five non-master/slave registers. These registers are used for storing the argu- -

ments supplied by an instruction (ARGI and ARG2_3), memory data register (MDR), result from ALU

(R), processor status register (PSW), and scratchpad (TI). Each register contains an input multiplexer .

(MlX), transparent latches, and output tri-state drivers. The input MUX is used to select input to the

register from different buses. The output tri-slate- drivers are used as multiple read ports of the register. In

between, there is the transparent latch which is used as a storage element.

To support the data structures used in the PLM architecture, some registers provide functions that -

manipulate the most significant 6 bits which include the tag bits and the CDR bit. For example, register TI ,

is capable of clearing the most significant 6 bits or the most significant 4 bits, which corresponds to provid-

ing a short integer or clearing the primary tag and secondary tag bits. Another example is the MDR which _.

provides means to change the CDR bit and tag bits using data from the microinstruction. It is also one of

the most complex blocks in the data path. The symbol of MDR is shown in Figure 9. The MDR block also

manipulates the tag bits and the cdr bit from other sources. The tag bits of MDR can be loaded from any 0

one of six buses. The cdr bit can be loaded from any one of eight places. The details of MDR in Figure 10

shows the various sourceF for the cdr bit and tags. The MDR block allows data to be transferred to and

0i

14

from memory with appropriate tags. For example, the tag of MDR can be set to the tag of TI register and

the cdr bit of MDR can be set to that of T register in one cycle.

All registers are written during phase I and read during phase 0. One way to do this is by doing an

AND operation on the clock phase and control signal from the microinstruction, and driving the clock

inputs of the 32 latches using a huge buffer. This implementation introduces local clock skew because the

delay of driving 32 clock inputs is quite large. The second way redu.es the clock skew and it is done by

performing the AND operation in every bit. However, because of space considerations, we decided to use

the first approach.

STATIC BUS

To support multiple parallel transfers in the data path, we want to -cad and write registers in the same

cycle. Since registers use transparent latches, the output of registers have to be disabled after phase 0.

This will leave the buses in high impedance state after phase 0. The way we solve the problem is by intro- . "-.*.,,

ducing a static bus circuit to buses which are involved in the reading and writing of registers.

The static bus circuit consists of an inverter and a tri-state buffer. They are connected to form a latch

which will be enabled after phase 0 goes low. Together with registers, the static bus circuit acts as a master

slave flip-flop with the register as master and static bus as slave. Under this scheme, reading and writing to

registers in the same cycle is possible without introducing the space penalty of using master slave flip-flops %

in the registers.

REGISTER GROUPS .

The register groups in the chip are basically RAMs containing 16 words, each 32 bits long. There

are four register groups each containing 16 registers. The first three register groups have only one input

and one output. The first group is used for storing constants and the base addresses of i ,e Le stack.s ,

shown in Figure 3. This would allow experimenting with different sizes for the stacks in the data space.

The heap usually occupies a good part of the data space. The pushdown list (PDL) is supported by using

two register groups. The left and right parts are stored in the two groups. If a structure has more than 16

levels of nesting then the the bottom entry will overflow to memory.

• ,.%..... .,... .. ,..*- ... , .,....*- ..-- ,-- .< .
~~~~ I k ::.:-': v



15 pp.

The fourth group is used for argument registers (eight in all) and state registers such as E, B, TR, gr

Heap backtrack pointer (HB), and continuation pointer (CP). The remaining three registers are used for

book-keeping. The argument registers support fast execution of procedure calls and also data communica- e

tion to the external environment. This register group has three inputs and two outputs. A multiplexer is

used to select an input. It has two read ports so that two different pointers, for example, stack and trail, can

be manipulated simultaneously. A detailed diagram of this register group is shown in Figure 11. RAM

cells in this register group have two read ports and one write port. Two separate address decoders are pro-

vided for the two read ports. One of them is also used for the write port. Instead of having only one source

for the address as in the cases of other RAM's, there are four ways the address for the register group can be

generated. Three ways are used to generate the address for the lower eight words and the fourth way is

used for addressing the upper eight words in the register group. The three ways use the lower three bits of

Argl, Arg2, and three address bits from the microinstruction. The fourth way uses the same three address

bits from the microinstruction. The four ways of generating addresses are coitrolled by two bits from the

microinstruction. Each of the two read ports has its own addressing bits supplied by the microinstruction. S

So, they are independent of each other. This register group is one of the important blocks since it is used

often.

A macrocell has been designed for the register groups with a worst case read time of 30 ns. The

implementation is similar to that of the non-master/slave registers except that the transparent latches are ,4 ,

replaced by an array of 1-bit RAM cells. The read (write) enable control signal, an output of the decode

logic, and phase 0 (phase 1) of the clock are put through an AND gate as in the case of registers. The

storage part of the macro cell is organized as an array of 32 rows and 16 columns with 1-bit static RAM -

cells. Eight RAM cells in each row are connected to a bit line bus. Each bit line bus is connected to a huge

tristate buffer that drives an output bus. To reduce the read time, p-devices are used to precharge the bit

line buses. The transistors in the I-bit RAM cell are sized so that they can pull down the bit line bus in less

than 30 ns and the p-device can pullup the bus in less than 50 ns.

The current access time for the register groups is less than 30 ns (worst case) with the exception of S

the dual ported register group which is about 35 ns (worst case). Since the dual ported register group is not

in the critical path, the extra delay does not affect the cycle time. %,%

% ,

',,N



16

COLLISION DETECTION

The data space is divided into four parts to contain global heap, heap, stack, and trail. The starting

addresses for the four parts are stored in the constant RAM block of the data path. As data items are

entered into the global heap it is possible to exceed the space allocated and go into the heap area. A similar

kind of situation can happen between heap and stack, and stack and trail. These are called collisions and

they have to be detected and reported to the host system.

To detect collisions in parallel with the data transfers in the data path, parallel hardware is included

in the data path. The top 15 bits of H2, H, and S are compared with the base values for heap, stack, and TR

respectively. If the two are identical then there is a collision and a signal is generated and stored in the pro-

gram status word (PSW). The comparison is done on 15 bits instead of 28 bits since not enough time is -

available during register transfers in phase 1. Note that since we are not comparing 28-bit addresses the

collisions are detected at the page level, where a page is 8K words in this context.

4. MICROCONTROL DESIGN

The microcontrol comprises a microsequencer and a status unit. The microsequencer supplies the

address of the next microinstruction to be executed. A block diagram of it is shown in Figure 12. To keep

the design simple it supports just one level of microsubroutine and one level of interrupt. Two 9-bit regis-

ters, microreturn pointer (urp) and control microreturn pointer (curp) are included in it to store return

addresses. Fast microbranching is supported by partitioning the ROM into four pages and using logic to

modify the two most significant bits (page bits) of the next microaddress seed. The micro page select .e

(upage-select) logic modifies the page bits according to the current status and directives from the microin-

struction.

The next microaddress is selected from different sources according to the current status and direc-

tives from the microinstruction in the micro program counter select (uPCselect) circuit. The potential

sources for the next microaddress are: modified next address seed, new opcode, argl register, subroutine

rom, microreturn register (urp), and control microreturn register (curp). 0

Both upage select and uPCselect circuits have been designed using the tree-height reduction method

proposed by Kuck 18]. Although the tradeoffs involved ( e.g. different basic cells have different fan-out

'.I-



17

capacity, there might be too many cells needed, etc.) are too complicated to obtain the optimal circuit, we

used approximate circuit breakdowns and obtained good performance.

Since only the most significant two bits (tag bits) of the seed need to be modified by the upage-select

circuit, there are four possible ways of accomplishing the modification. We have a choice of generating the

encoded version or decoded version (i.e. either have a two bit output or a four bit output) of the page

number. The two bit version is heavily favored since it needs fewer component counts. It also runs faster

than the four bit version since it is necessary to change the output of the four bit version back to the two

page bits.

Optimizing the design of the uPCselect presented some challenges. The implementation produces a

two bit encoded signals and then decodes them to four control signals. The only consideration used in the

optimization is the reduced component count. It is believed that fewer components indeed would lead to 'p

faster circuits, but it is not clear whether the time saved would be more than the additional decoding time .,

needed.

We have designed a uPCsclect circuit with a delay of 35 ns. The selected next microaddress is then

supplied to the external-mux block in Figure 12. It is also stored in the control microreturn pointer (curp)

register. If no interrupts and exceptions are present then the address supplied by the uPCselect logic is sent

to the ROM latch. This completes the operation of the microsequencer and the total time available to the

microsequencer is 42 ns. If exceptions occur then the address of the exception handler routine is supplied

to the ROM latch. If an external interrupt occurs, then the address supplied along with the interrupt signal

is supplied to the ROM latch. The top level diagram of the microsequencer and the tree circuits of
%

upage select and uPCselect are shown in Appendix 1. We implemented the two circuits using PLAs and 4'.

random logic and selected the latter because of its speed.

STATUS

The status unit contains the current state of the PLM. The state information includes condition codes,

tag bits of MDR, T, TI, cdr bit of MDR, and tags of selected argument registers. The condition codes are

generated during the previous cycle. They are latched into the status unit during phase 0. The status unit %

delivers the state information quickly to the microsequencer. The 18 bits of the status unit are stored in



18

LSSD [6] registers so that the chip can be tested by initializing the chip to a known state. The unit contains

a shadow register block and an LSSD block. The shadow register block stores the two most significant bits

(tag bits) of the registers AXO - AX7 in the the dual ported register block of the data path. The shadow

register block is written into during phase 1 when a write to AXO -AX7 is performed in the the dual ported

register. The contents of shadow are available to the microsequencer within 10 ns from the time phase 0

goes high. This fast delivery of state information is needed to meet the microsequencer timing constraints.

S. RONI, MIR, and INSTREN DESIGN

ROM

One of our goals is to design the ROM with a read access time of 40 ns. The NCR design team sup-

plied the ROM as a macrocell. The circuit diagram of the ROM and the timing diagram are shown in Fig-

ures 13 and 14. The ROM is organized as a NOR array with 128 rows and 640 columns. The 640 column"

are divided into 160 groups with 4 columns in each group corresponding to the four pages. The least ",-"

significant seven bits of the ROM address specify the row to be read. The most significant two bits specif. -

the column. The worst case read time depends on the output capacitance on the 7 input NAND gate. This

capacitance increases as the number of zeros stored in a row.

The ROM uses a precharge scheme to reduce the read time. The reading takes place during phase I

and the values of the 160 bits are supplied to a latch. During phase 0 the value in the latch is sent to the

microinstruction register (MIR). The values of eight bits at the end of a word in the latch are also supplied

to output pad drivers for communicating them to the cacheboard..•

MICROCODE GENERATION 'J

Most of the microcode for the chip is generated from the microarchitecture simulator using pro- .

grams. The microcode is stored in the ROM. Almost 300 locations in the ROM are used to implement the
PLM instructions. The state diagrams for the instructions are included in Appendix 1. The remaining 212

locations are used for builtin functions, initialization, and debugging. The microinstructions are 160 bits 

long in the chip compared to 144 in the TTL version of PLM. This is because the number of buses in the 

chip and the implementation of PDL are different from the TTL version. There are also additional blocks in ._

dSl'l 1
,* ,,-

~ ~ P p F~ -. " ~ p ~



19 '1

the chip to handle heap/stack and stack/trail collisions.

To generate microcode, programs are wriuen in "AWK" and "C". One program determines the .

buses to be used for each microstate so that bus conflicts would not arise. A second set of programs are

wiuen to generate values for the fields of a microinstruction corresponding to the data transfer part of the

microstate flow chart. Another program generates the ROM address for the next microinstruction from the .I

next state part of the flow chart.

MIR DESIGN

The MIR contains the current microinstruction. It is implemented as an LSSD [6] register. The con-

tents of MIR are supplied to the data path and microsequencer for the entire cycle if the chip is not in test

mode Since each bit in MIR has to drive logic in 32 bitslices. buffers are needed to reduce the delay. The

buffers on MIRD block of Figure 2 are designed so that within 8 ns of phase 0 going high the control point

values will be available to the farthest bitslice in the data path. The chip can be put in the test mode by

asserting the TESTI pin in Figure 15. In the test mode the MIR can be loaded with data on the SHIFTINI

pin by shifting it using the SHIFTA clock. Any microinstruction can be loaded into the MTR and executed.

The results can be observed by reading them using the MEMDATBUS. " "9

INSTREN DESIGN 
,_

The PLM instructions usually take several cycles to execute. It is possible to prefetch the next

instruction for most of the PLM instructions to avoid delays in starting the next instruction. The cycle at
.-,' ,

which prcfetch can be pcrformed is indicated by the microbits PREFI and PREF2. The PREFI bit when

avsented indicates that the next PLM instructions opeode and first argument can be fetched fiom the cache-

board. The INSTREN pin of the chip in Figure 15 is used to communicate the prefetch signal to the cache-

board. The cacheboard supplies the instruction and a 32-bit argument within I0ns from receiving

LNSTREN. The PREF2 bit when asserted indicates that the second and third arguments can be fetched dur-

ing the cycle if the opcode of the next instruction indicates that arguments two and three are needed. Three

bits (bits 4, 5, and 6) of the 8-bit opeode indicate the number of arguments and the size of an instruction in

bytes. The INSTREN signal is then generated and communicated to cacheboard. The data supplied by the

_, .., ,... ., ..,. ,., ,. . .., ,. . ., . .. .... .. . . .. .. . . .



20

cacheboard in response to INSTREN is stored in ARG2_3 block of Figure 5.
i

6. DESIGN VERIFICATION

The verification of the design has been the most complex and time consuming activity. We did func-

tional and timing simulation to verify the design. The complexity of the design prohibited us from starting

the functional simulation at the chip level. The use of master/slave registers, latches, two phase clock, and a

complex next microaddress selection scheme based on tags and condition code required us to start the tim-

ing simulation at the block level.

FUNCTIONAL SIMULATION

A hierarchical methodology is used in the functional simulation. The individual blocks of the chip;

units such as data path, sequencer, MIR, and status; and the entire chip formed the three levels of the """

hierarchy.

We used the QUICKSIM program of IDEA station for simulation. Each block in the data path and

microsequencer is functionally simulated by applying all possible values for the control inputs coming

from MiR. The functional simulation of the ALU is carried out using two programs. All the functions of

the ALU are exercised by using a given operand for the A and B inputs of the ALU in the first program. V

The add and subtract operations of the ALU are performed for a set of patterns by the second program. All

functions of the remaining blocks have been exercised by a select set of input data.

Following the functional simulation of individual blocks, entire units in Figure 4 are simulated.

Exhaustive simulation is not possible because of the large number of inputs. For example, the microse- *5 .j*

quencer has 18 inputs from the status unit and its operation is dependent on these inputs. But it is not possi-

ble to make a simulation run for each combination of values. So, programs have been devised to reduce

the number of simulation runs. Programs have also been written to check the results of the simulation runs.

Simulating the data path as an unit presented a number of challenges because of the diversity of the blocks.

We first idcntificd 14 classes of transfers that can take place ;n the data path based on the register transfers

in the microcode. For each of these classes we used a set of data values on the input buses and observed *_.

the outputs.

... -.. .. ... ': -



21,_ "..".

Functional simulation of the entire chip has been done using benchmark programs. The simulation

and verification process used the programs shown in Figure 16. The ROM of the chip is first loaded with

the microcode. The execution of benchmark programs is simulated by reading the sequence of microin-

structions from the ROM for each PLM instruction and supplying the control points to the other units

within the chip. Inputs to the chip are supplied on the MEMDATBUS and outputs are observed on the

MARBUS and MEMDATBUS. For each cycle the contents of the key registers and the next microaddress

are saved. This state information is compared with the output of the microarchitecture simulator for each ,.

cycle when it is executing the same set of programs.

The set of benchmarks used to verify the design is shown in Appendix 1. An example of a set of

stimulants supplied to the QUICKSIM and the output from it are also shown in Appendix 1.

V

TIMING

The need for reading and updating a register in the same cycle dictated a two phase clocking scheme.

For example, data can be read from T and the register group, CONSTRAM, that contains STACKbase dur-

ing phase0. During phasel the add operation can be performed in the ALU and the result stored in T. We

used delayed branching and a pipeline register for the microinstruction (MIR) so that data path and the

microsequencer can operate in parallel. I

To understand the timing issues in all the blocks of the data path, 14 different classes of data

transfers are identified in the microarchitecture. For each of the 14 classes timing diagrams are drawn %

using the two phase nonoverlapping clock. The registers and register files are read during phase 0 and S

wriuen into during Phase 1. The ALU is combinational and it is assumed that it will supply the result 10

ns before phase I goes low. In the case of master/slave registers, the master is written into during phase 1.

The transfer from master to slave and reading the slave occurs during phase 0. A set of timing diagrams is
'. -..'y

included in Appendix 1. This set is useful for cache board designers and also interfacing the chip to stan-

dard buses.

TIMING SIMULATION



22

The timing simulation has been done using NODEDELAY. PATHDELAY, and QUICKSIM pro-

grams with estimated capacitances to determine the delay through the blocks. The timing information is

used in redesigning the blocks to achieve the lOOns cycle time. The timing simulation programs are run for P

each of the blocks in the data path and microsequencer to calculate the delay in each block. The blocks

have been redesigned by adding bigger drivers, or changing the circuits to reduce the delay and to meet the

timing constraints. For example, the ALU initially took 70 ns to do ADD operation since we used four

input gates. We redesigned the ALU by using 2 input NAND and NOR gates, OR-AND-INVERT(OA .

121) gate, and AND-OR-INVERT (A0121) gate. The SPICE run on the ALU showed a worst case delay 6

of 37 ns. '" ,

The results obtained from the timing simulation on individual blocks are used to determine the time -t ,,

delay for each of the 14 classes of data transfers in the data path. Whenever the calculated time delay

exceeded the specified value the blocks have been redesigned to meet the specifications. :.

The timing simulation on the blocks of the first version of the microsequencer resulted in a complete
A

redesign since the estimated delay exceeded the 42 ns constraint by almost 50%. Another unit of the chip •

that had to be completely redesigned to satisfy timing requirement was the MIR. The LSSD registers of the

MIR have been redesigned to reduce the time delay.

7. PHYSICAL LEVEL DESIGN

The area of the chip, if it could be routed conventionally, has been estimated at nearly 1.8 cm on a

side, and our cycle time target of 100 ns would be missed by at least 50%. Rather than accepting this poor 0

result, NCR developed a new approach to implement the physical design. The goal is to develop a place-

ment and routing methodology that would enable us to build very complex structured designs (ones with

more than 20,000 gates) with sufficient density to achieve efficient manufacturability and high perfor-

mance.

The physical level design work for the chip is done by the Advanced Development group at NCR-

Microelectronics in Ft. Collins, Co. NCR undertook this project with the desire to explore the problems

associated with physical design of next-generation semicustom products. The PLM architecture was espe-..

cially attractive, because the design requirements of the chip anticipated those of a growing class of %

%

*<-.'~ '.,:~s- S 5 ''S i



23

advanced processors. It was, nonetheless, beyond the capabilities of current commercial semicustom S

design systems. Implementation of the PLM architecture has provided an opportunity to explore hierarchi-

cal, cell based design representations for complex, structured logic.

The concept of cell based design for VLSI is itself a form of hierarchical representation. Cells or

blocks (both parameterizable and fixed) are designed with low level elements and transistors. Then, with

some systems, the chip design can be based only on a behavioral abstraction to the cell level. Currently,

however, the most common approach to physical layout is to extract a single netlist from a design at the 0

cell level, without any further hierarchy. This so-called "flat" netlist is used by an automatic placement and

routing program to produce a physical layout.

If conventional routing techniques are used to route a highly structured architecture like PLM, one

finds cells associated with a given block distributed throughout the layout. A skilled designer, aware of the -

structure of the logic knows, for example, that data paths can be bit sliced; he can place the logic associated

with a given bit very compactly, and efficiently for performance. However, a "flat" router has no apriori

knowledge which permits such efficiencies. Scattering of highly related logic increases the wire length

between cells, and in turn increases the die size and the path delays of the final chip. These factors can

lead to very unsatisfactory results. It is possible with most tools to "seed", or specify the location of cells,

to improve interconnection during automatic routing. This is, first of all, a very tedious procedure, but in

addition, it has been our experience that seeding a placement is generally inefficient, and increases the die

size over an unseeded placement.

TOPHER (TwO Phase HiErarchical Routing)

A hierarchical physical design procedure has been developed to address the problems and goals

identified above. It was implemented for the chip as an extension of NCR's commercial cell based design

system (VISYS), and progressed in the following way. The design was physically partitioned into blocks %-

corresponding to the logical blocks shown in Figure 4. On first pass routing, the bit slices were routed

inside each block, so that they would align with (pitch match) adjoining blocks. Design verification was N

done on the individual blocks, which are fairly manageable in size, allowing for easy detection of layout •

problems. The blocks were then wired together in a second pass through the router, after the chip pad cells , ,

- GL--



24

were added to the layout. The finished layout was then submitted to a full chip level design verification

cycle very similar to that used for a conventionally placed and routed ASIC design. The two phase
hierarchical routing is called TOPHER. An important aspect of TOPHER has to do with the use of the

metal interconnect layers, and the layers on which ports are defined. NCR's commercial cell library uses 2 "I

levels of metal for interconnect and power routing; metal-2 is routed vertically over the cells for reduced

wire-to-cell ratio, and elimination or reduction of feed-through cells. Since metal-2 is largely free of area

penalty, it is important to maximize metal-2 usage. Consequently, the commercial cell library has all port

connections on metal-2, using metal-I as the primary horizontal routing layer and for power and ground

wiring. Metal-I, therefore, runs parallel to cell rows.

If this approach is used in the first pass of TOPIER routing for a block, a significant number of

metal-2 wiring tracks would be consumed just by the input and output pins of the cells. These tracks would

then be unavailable during the second pass of routing. To reduce the number of blocked tracks, we

modified the cell library to have all inputs and outputs on the polysilicon level, instead of on metal-2. Out-

puts on polysilicon are, however, undesirable because of the high resistance associated with this material.

It is most advantageous therefore, for this first-pass muting problem, to have input pins on the polysilicon

layer, horizontal connections and power/ground on metal-1, and output pins on metal-2. Since the router

supported only two routing levels, outputs had to be initially routed on the polysilicon layer, so all of the

pins could be defined on only two levels (poly and metal 1). An NCR proprietary post-layout processing

tool is used to automatically convert all polysilicon connected to output ports back to the metal-2 layer.

This eliminated resistance at the beginning of a net, and provided significantly better performance than

would a library actually designed with poly outputs. ".,-

CELL ROUTING

The process for cell routing begins with identification of the critical nets, the block level port loca- ,

tions, and the number of cell rows to be used. In order for each bit slice in a block to align to adjacent bit

slices throughout the data path, the cells are manually placed. In this way, cells are positioned so that block

level port connections would be approximately aligned to the predefined bus order in a bit slice. Block 0

level port connections are the ports to be wired to in the second pass routing. They are either input or out-

put ports '' standard cells. The tedious manual procedure is due to the lack of schematic-capturc-level

%-'r

AL OF%* ~ .' ~ * \



25

seeding capability in the router. A recent version of the router greatly automates this step, but it was una-

vailable at the time the blocks were routed for the chip. ',

BLOCK ROUTING

After cell placement, block control lines and other critical nets are identified and wired first, followed

by the automatic routing of the remaining nets. By splitting the wiring into two groups, the critical nets

could be more efficiently wired using an interactive mode of the router if desired, thereby guiding the route

to the highest performance implementation possible. Upon completion of a block route, poly paths con-

nected to output ports are converted to the metal-2 layer, as described earlier. The result is that the blocks

are wired with three levels of interconnect: poly, metal I and metal 2.

Next, the blocks are loaded on a layout workstation. The graphics manipulation programs and an .

interactive editor are used to add block level port de'finition structures and metal-2 power buses. Three sets

of power buses are placed in each block to provide an adequate power distribution network. The buses are

placed next to bit 0, between bits 15 and 16, and between bit 31 and the control logic. At this time nets that

did not route to completion are also finished and the blocks are now ready for verification.

In addition to the blocks in the data path of the chip, there are addiionr.l functional blocks associated

with status and microsequencer units. These blocks are automatically placed and routed after defining the

port locations. These port locations are selected to minimize excessive wiring in the global routing pass.

Since many inputs to these blocks are from external pads, the ports are also placed to match the desired

pin-out of the chip. The only other constraint placed on the router for these modules is their width which

should not exceed that of the data path.

ANALYSIS

For each block, post layout timing analysis and network verification are performed by a set of NCR 0

proprietary software tools known collectively as VITA. Additional process design rule and electrical rule

checking is also performed to assure that the layout topology is correct. The VITA tool Interconnect

Analysis (IA) is used to extract resistance and capacitance values that are back annotated into the design

files so that functional simulation can be based on real values. For the entire chip, only those pins con-

nected to block level ports still used estimated capacitance values after this back annotation.



26

The network comparison tool, NETCMP, is used to verify that the layout matches the netlist at the p

cell level. NETCMP does not do a transistor-by-transistor check, but it verifies the accuracy of connectivity

between cells. The run time is considerably faster than the other, more detailed, check but gives compar-

able results if the cells are known to be correct. The design rule checks (DRC) and electrical rules checks

(ERC) are run next, followed by a transistor level check between layout and netlist (LVS). This latter usu-

ally runs without reporting errors if any discrepancies found by the VITA programs have been fixed

correctly.

GLOBAL ROUTING

The global routing of the chip is done by the second pass of TOPHER. The blocks of the data path,

status, and microsequencer are wired together using the two metal layers. Power and ground routing is 0

done prior to signal routing. As mentioned earlier, the bit slices for the chip are laid out to align when

blocks are placed next to each other in the second pass. These bit slices are then wired together using

metal-2. Control lines in this design run orthogonally to the data buses, and are in metal-I. Miscellaneous

signals and pad connections are wired in either metal layer, in order to complete the layout. , .

8. CONCLUSION

The semicustom approach to logic design and TOPHER approach to physical layout has resulted in a LVA.

chip design with 40,000 equivalent gates, and eleven 32-bit buses, on a die under 1 cm per side (approxi-

mately 130,000 square mils) having a simulated cycle time under 100 ns. A layout of the chip without glo-

bal routing is shown in Figure 17. Note that almost 70% of the area is used up by the data path, and on]\

25% by the ROM and the microcontrol. The logic design, simulation, and verification effort involved th-,

equivalent of five engineers working for 2 years. The physical design process involved two engineers, on,,

working half time, for 1.4 years. We accomplished this using a conventional two-level router, and the chip

is construcled in a manner compatible with existing design verification tools.

ACKNOWLEDGEMENT

-+ g , -'_ .. ,:-_.' _ , - . 4 ***...,....~ , .,-.-. .... .-. - .. ,.-,... ...- ',,"



27

The physical level design was done by Maurice Moll of NCR Fort Collins. We appreciate his efforts e

is
and those of Dan EUsworth at NCR Fort Collins. We are thankful to Tep Dobry, the designer of the TTL IV

version of the PLM, for explaining the microarchitecture and answering our questions related to the archi- a
tecture and the microcode. We are thankful to Chien Chen for designing the ALU, Allen Wei for writing
programs to check bus conflicts in microcode, Jim Testa for designing parts of the microsequencer and An ,

generating microcode from flow charts, Harold Crafts of NCR for developing the cell library, and Tara

Weber for microcode generation programs. The comments and suggestions provided by the members of the

Aquarius project are also appreciated. 41

This work is partially funded by Defense Advance Research Projects Agency (DOD) and monitored

by Naval Electronics System Command under contract No. N00039-84-C-0089, NCR Corporation, Day-

ton, Ohio, and National Science Foundation. Equipment and other support for the project has been pro- .

vided by DEC, NCR, Apollo, ESL, and Xenologic.

.,5.

-;'

".?0

*5 5,'

", .%

• II
0.7<

pi

SP + ' ,p ' ,,p ,. ,., . .,,. .. .. . . . .. . .. ,€.
. . . . , -.... ... ,X .+, , ',€'.,+' ." -+'. 'P '+," " " ,," . +r.. . ., +5



' p

28

REFERENCES

1. NCR Corporation, NCR/32 General Information. 1983.

2. A. M. Despain. "Lecture Notes, CS 257," CS Division, UC Berkeley, (Fall 1984).

3. A. M. Despain, "Notes on Computer Architecture for High Performance," New Computer Architcc-

ture, Academic Press, (1984).

4. T. Dobry, Y. Pau, and A. M. Despain, "Design Decisions Influencing the Microarchitecture For A

Prolog Machine," Proceedings of the MICRO 17, (October 1984).

5. T. Dobry, A. M. Despain, and Y. N. Pat, "Performance Studies of a Prolog Machine Architecture,"

Proceedings of the 12th Intl. Symposium on Comp. Arch., (June 1985).

6. E. B. Eichelberger and T. W. Williams, "A Logic Design Structure for LSI Testability," Proceed-

ings of the Design Automation Conference, pp 462 468, (1977).

7. B. Fagin, Y. Patt, V. P. Srini, and A. M. Despain, "Compiling Prolog Into Microcode: A Case Study

Using the NCR132-000," Proceedings of the MICRO 18, (December 1985).

8. D. Kuck, "The Structure of Computers and Computations, Vol. 1," John Wiley Press, New York,

(1978).

9. R. E. Ladner and M. J. Fischer, "Parallel Prefix Computation," Journal of ACM, Vol. 27, No. 4,pp

831 - 838., (October 1980). .

10. E. Tick and D. H. D. Warren, Towards a Pipelined Prolog Processor, SRI International, Menlo Park.

CA (August 1983). Technical Report.

I. D. H. D. Warren, An Abstract Prolog Instruction Set, SRI International, Menlo Park,CA (1983).

Tecl'iical Report. 0

N

IL

0N"



Table I VLSI-PLM Instruction Set Summary

Instructions Cycles Max. Number Dynamic Instruction t " -
of Transfers Frequency (%)

try me else 21 7 3.89
try 17 7 1.12 ".

retry me else 3 7 2.63
retry 3 7 0.62 ____

trust me else 5 6 2.08

trust 5 6 0.59
cut 8 4 2.24

cutd 1+7*1 5 0.04

fail 19+3*1 4 0.13
switch on term 5+d 3 5.46
switch on structure ll+d+4*l 4 0.36

switch on constant 10+d+4*l 3 0.14
allocate 6 6 4.37

call 1 4 3.08
proceed 3 4 2.51
execute 1 1 0.42

deallocate 5 4 3.19
escape variable 6 3.48 V,

get-list 3+t+d 5 5.15
get-structure 4+1+d 5 4.69

get variable 5+u+d 6 4.82
get-constant I+u+d 5 1.90 %

get value 5+u+d 4 2.49
get nil 2+u+d 3 0.91

put-value 4 5 9.37

put-constant 2 3 2.17

put variable 4 9 3.34
put unsafe value l0+d 5 2.31

put-list 3 3 0.67 ,
put-structure 3 3 0.26
put nil 2 3 0.03 0
unify-variable 6+c+d 6 9.01

unify-cdr 5 5 4.07
unify-value 9+2*d+c+u 3 4.79
unify-nil 4+d+u 4 4.39

unify-constant 4+d+c+u 3 1.27
unify void 2+8*1 5 2.04

add 3 6 0.1 ',..

sub 4 4 0.42
mull 85+number of ones 7 0.01 a,

in the multiplier
and 3 5 0.51

or 3 5 0.0
eor 3 5 0.0 .

:. ............ aln~a -- _ L1 [lII I.k - [t4I[ 
¢

. '1



jump 10.0 '"6

jumpxn 1 1 0.0
jle 5 4 0.0
jlt 5 4 0.0 %

je 5 4 0.25
memread 4 5 0

memwrite 3 5 0

coderead 4 3 0

codewrite 3 3 0

loadn 2 2 0

dereference 2+3*links 4 0.95
reset 5 5 0

noop 1 1 0

halt 1 0 0

boot 22 5 0

Dynamic Instruction Frequency is obtained by executing the Big Benchmark Set and averaging the
results.

where:
c - time for a decdr operation (= 2).
d - time for a dereferencc operation (= 5).
t - time for a trail operation (= 4).
u - time for a unify operation (= 3 + optional trail).
I - the number of loop iterations (>= 1).

%

%

%

...

•;~ .-

SI

'-:,.%



e0

ii

( b, HOST Peripheral
Vs-PLmenry

(Vrul(SLIN-3) Device

%

%Standard Bus (VME)

FIGURE 1 BERKELEY PROLOG SYSTEM :-t.

,. -'1
o l~

%'%

) ..-..V
'.,

- ' -" = L . - ' .- --' -' '--.-.. "'.% .', - ". %' .'. "."..-.*-_ .-'_-'-
"

'-. , - . .-.- . . . ",.A,



P* ~g ila

II

CD x

H I

b %

J-

7, X

£ IU
ik 4_ ;-



HEAP STACK TRAIL PDL H42 SPACE

[El B RB PDL6 2

FIGURE 3 STACKS IN THE DATA SPACE AND POINTERS

opeod busmP~ 
g

foreRad2 b1 0s

~~1GURE~~~1 x 1LC 50ARMo VS.L

lwS

Pbwoe

134 1 Pb 0 A

rwrnat bs 3-- DAA PTH 3 is CRO Ro

mar us SATUSSEQF--NCER DDS

429 (LSSS



K' 1
#4

% %K

%K
%' %'.%' %'K'

K'1'K'K

K' ~ K .. c c

K.%K'K
_ _ _ %K _ _ _ _ _ _ _%' _ _ _ _ _ _ _ _ _ _ _ _ _

14K

K' 2 ' 0 Z

K' K' '

%'

%' '

zw K

K' K' 'K '

cc K

9L~K. K '0
- K --. *'. ~ K ', _____ ___6'K.o

%% K ' ~C
K' 'K K'

'...~ ~ %'. % .6'



II

-~ --....-..- ,

I S

j j .

, I!:, .:,

,I--.:.,'i

, A',..--

I.-.',

- i)* '

:ji . .w ,

ii ii ,, ..-. '-.

i l i'

*? .. I
_____-___._,-C



- -N' ~'(~ ~IJ~-~~l'% J". CD

LnI

C, I -

0
0 0 -

C3 -0 .A

UD 0

.L'a . ,-.-0

IU

4 a-
Li L

m IV~ m

vC
a_ L H-

z Q
-C _0 _0 -C -0 t

co'



00

u %

LtCL

OL~ 

-A

L 

L

LO 
0 .-

CU,

LL.~

og:%

* .i



9 T 0

~~OD1 C.)) CZ)c& . I u,.0
s2C:).

lI

in o- i 4Lc

C'J m

c... 0 1

CID LO

-2-w



- ~ - T'a

All3

V0

Z

LT 44 c
rw

-- - - - ---

0 -r 
0 -



t at

-Lj

L-JJ

LJ.1 71

cz* a:

NIN



lb.

I

*1,S~

A
I

I'-

cd~o
I-.ff1 10

I; ~

-I.. .~1-i

S .*O a; I'.

S .-. c-s

S

~ j A . C-
:5 i2i~ I Kk2~ .~j9

I A- C) *~L] _ U -~

*1 -- 4

gg 4 U E

:*~ II 7-,' 0
'I- ''-I

Ii -- WI'~- - I H ; z
- I'--- 4.

6 II I;-

a II k;~ 1 ~.

I
S



ROMEN - - 4 -
NOR ARRAY

ROW - -i
ADDRESS
*of 128 words)ROE

COLUMN
ADDRESS - ~ V
(1 of 4 pages)

ROMEN data

Figure 13. Circuit Diagram of ROM

?%we 0

ROM1EN controactiv

Date out vldvlddt

Figure 14. Timing Diagram of ROM

'5.



LU U U L~i U ~- I

cc - r - J C - ' - J 2 I-

rU z z -r- U

;. %

CD

ci r-

CD~L 0: U r

wdlL

OR-



%

" programs
PlM! codeL 

-

=input

MICROARCHI1TECTURE
SLN 4TOR z=7 output

7next microstate,.

NISI-PLM chip
%

QUICKSIM

register contents and
data on buses as a

function of time
when changes occur

EXTrIMCTOR

- -regist rI contents and 
".'

f for l z e o". 
. "

FIGURE 16 DESIGN VERIFICATION SYSTEM

.N

.w '.' ./..'..'..%. r -. .'.-. . -.. -" " . - -. .- . - - -..% jr. v . . .u .w ~ .. , .. . .
%. _ ,



.

WO

"Il0.O

Az0 20il22V 10
u . .

roe 0

uPR

111 ouI I I I 1 .
-L

aggggu1 1

I ULI11-L LI LLJL. LL
II- L ifi tUt

-I I IA LJ6

oi -o oim -o po I4

a I1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1si 1 I

NON



X+M +4 .-. .

I .3,%

Y2 PERMANENT
VAR IABLES

N - %

B
x E

Figure 18 Environment Frame 0

X + 15

TR
BP

CP.-....,,
E
A8
A7
A6
A5
A4
A a.

H

B

Figure 19 Choice Point Frame 0

. N., N.

.% . ,.

-
is,

%S
A. ~ .. • -. ,.. . .



01031 29 0

10 C G IY

C CDR bit XY = 00 small integer - .
01 other numbers '-,

G- G ' uarb a g e 1 0 a to m,-,
b it 11 N IL : ,

%
10ue 0DtaRprsnato inVS-L0..

G Garbae 11,N,



APPENDIX 1 ,

Tbis appendix has six parts. The first part describes the contents of the environment frame, choice

point frame, and the tagging scheme. The second part gives execution flow diagrams for each instruction
implementcd on the VLSI-PLM. The third part discusses the details of the microarchitecture level simula- 5_
tor. A block diagram of the simulator is included along with its description. The sheets of the entire data
path are given in the fourth part. The busses used by each block and the control signals needed to operate
the data path are also shown in the sheets. The fifth section contains the top level sheet of the microse-
quencer and the details of the micropage select circuit and the microprogramcounter circuiL The final part
contains timing diagrams of the various chip interface signals.

1. STACK FRAMES AND TAGGING SCHEME

The stack contains both environments and choice points (see section 2). Figure 18 shows the struc-
ture of an environment frame. Besides permanent variables, environments also contain the values of cer-
tain registers which must be preserved across the execution of a Prolog clause. The following registers are %)
saved in an environment frame (ordered from low to high memory):

,,-

E • location of last environment on stack
B: location of last choice point (and the current value of the cut bit)
CP: where to continue once this clause succeeds
N : number of permanent variables in last environment.

Choice point frames contain sufficient information to restore the state of a computation if a goal fails, %
and to indicate the next clause to try. Figure 19 shows the structure of a choice point frame. Choice points
contain the following register values (ordered from low to high memory):

B : location of previous choice point
H: the current top of the heap -
N : number of permanent variables in current environment
An : the contents of the argument registers (8 registers)
E : location of current environment on stack
CP: address of next clause to execute should this one succeed
BP: address of next clause to try should current goal fail ,.

TR : the current top of trail.

The four data types of the VLSI-PLM are implemented as shown in Figure 20. Two primary tag bits "-.
identify the data type. The four basic data types are reference (variables), constant (atoms, integers, and
other numerics), list, and structure. In addition to the primary tags, there is also a cdr-bit and a garbage 0
collection bit. The cdr-bit allows compact representation of lists.

The constant data type also requires a secondary tag field to distinguish between small integers,
atoms, and nil. The secondary field is not fixed by the hardware of the VLSI-PLM. The values given in
the diagram are typical.

2. DESCRIPTION OF INSTRUCTIONS S
The VLSI-PLM implements the PLM instruction set [I ] along with support for external (host) pro-

cessing. To lessen the performance impact that external procedures impose, a minimal set of general pur-
pose instructions have also been included. These instructions are used to implement nearly all of the pro-
cedures that otherwise would require host processing. "-,

Figure 21 shows the execution flow for each instruction. Execution flow of an instruction begins at
the top of the diagram and exits at the bottom. Some instructions have a second entry point, indicated by -
the entry labeled with need pr2 (p12 is short for prefetch2). This alternate entry point is used whenever an
instruction needs the second/third argument which has not yet been fetched.

Each block in the flow diagrams represents a basic block in the microcode. The left-most number in
each block gives the number oi microstatcs in that block (which is equal to the execution cycles given no

.-



o% ,

memory read/write delays). The middle number is the number of memory reads performed in that block,
and the right-most number is the number of memory writes. To the right of some blocks are notes indicat-
ing operations done by that block. Pfl, p2, new pl, and newp2 indicate opcode prefetch, argument
two/three prefetch, update PC (program counter in prefetch unit), and add offset to PC, respectively.Microbranches are also labeled to specify the conditions true for a given path. 

,,,-

A complete description of each instruction will not be given here. For more information see [1].

..

,- ,-K

'rK

.0

. B. Fagin and T. Dobry, "The Berkeley PLM Instruction Set: An Instruction Set for Prolog," UCB ."'

I

Research Repo. CS Division, University of California, Berkeley, (September 1985). 
"'

%. 
'p..



,.% .1,'

add

need pf2

pf 1
3 pf

IFETCH

allocate

pf.
2 0 0 pr2

E <B E >= B .
E<B E>=B

1 01 10 1

4 0 3 -

IFETCH

and

need p/,

3 0 p I 0
0

pr.

IFETCH:

Figure 21 State Diagrams for the Instructions .. ,. S



0*~w

call ne f

nerdca pf

4 1 0 0

IFETCCH

code writ 0

pr.

IFETCH

3 1 0 pl

c utbito

B set0

IFETCH 4 2 0 p

IFETCH *-

%~ %



A'

1 0 0 pf I

3 2 0

new B argl

2 1 0 Pf- 1 0 0 pp. •

IFETCH

deallocate

5 3 0 pflpr "O

IFETCH

decdr 4..

str It vat r.

RETURN RETURN

Ilk

.,4.::
: " " "" " "."-"- '-,-""...-'"-"-,"''.'."''"-'.'".".- 'F'a"..",". ,-a'e

"
-"- .e

'
- .e-" '' "."''-"

. ' "
'" " " """" "-" " '''"p4.



%

deref

derefererice

0 0 pfl %4.

IFETCH

dereference

1 0 0

RETLRN

eor

need pfr2

pS

pf I
3 0 0

Pf2

IFETCH

exec ute

100 pf 1 N

IFETCII



external escape

...... ~ .. .. ..

52 0 1nerp hos 3 0100-

1FTC 0 0

1 0 1



PP~

fail 0

B=--SThbase

GOAL FAILURE

address/value
pair

ticed pf

UNIFY.

1 0 0

derefrenc Ax[Ag~l

%

UNI F Y

'43* -~ * -- #:N*-- 5 .~* -'5'...' *NA



.^W

get list

0 0 pfl

dereference Axlarg I

FAIL 2 0 1 1 0 0 read mode J,

wre mode

tra: 501 IFETCH

100

IFETCH

get-nil

60S S



getstructure

need pf2

dertference AXlarg2'

1 0 0 p f l " "2 '

c:on t a

-.....S t. - a d va' 
wnte mode

FAIL 4 1 0 mode 3 0PQ2 PC '

arg] trail 501

FAIL IFETCH

IFETCII

% %°

getvalue,

need pf2

*% . 4.4

3~.- .4.'

dereferen.,t AXfarg2

X addressng Y addressing

1 0°0 3.1.0 %

dereference AXIargil.1
UNIFY

%-. % . ".

4P.P

%-. ..4



getvariable

X addrtssingY adsin

IFETCH EFETCH

jeq/jlt/jle

00

jump

IFETCH le

Nh



jumpxn

2 0 0 p11 -

IFETCH %.

loadnS

pf I
pf2

IFETCH

lock

need pQ~

pf I

44 1;pf 2 e Iemafu 0

IFETCH , 5

mcmrcad
need pf.

I 0 0 pfr2

41 0' f If

IFEICH

%.



memwrite

need pQ~

I 0 0 pr

3 0 1 pfl
3 0 1 pf2

IFETCH

muit e

need pr2

1 0 0 p r-

0 0
A%

normal exit 2 0 0 pr2

IFETCH 1 0 0 shift

overflo~k exit 2 0 0 pf241Il

IFETCH

S'zl

-p.-. -~..z



,. *4*

A7-

or

need p,.

pf I
3 0 0 _,."

3 pf2

IFETCH

proceed

newpI
pfl I

CP==0

GOAL SUCCESS rFETC-.

putscon sLant

need pr-

S

2 0 2 0 0 PPfl

%.

IFE TC I IFETCH

put-list

200 pf I-
.,:

'%,,

IFETCH

0 '

.,.a- ..- .'. .- .. - -• o .. - .. . - d . e .- ,- . . % ,- .. - ,, - . ,- . /. - .- ., : .- . - ,..,,....' .''r .. ', A ..



put-nil v

I 10 10 phI

IFETCH

putLstructure

need pr2

710 10 
1 10 

10 
Pr

2

2 0 1 Ph

IFETCH

S%

v % ,



put-unsafe-value

need pC2

1 0 0 1 0 0 PC

3 1 0 pfl

dereference Yi

1 0 S

dercf(YO) is nonvaT dercfCO'i) is var

IFTIF

0 01 00

IFETCI -

put value X

need pf'Z

0 f 05 0 rwpz - P,1

IFEI CH IFEI CI I

AIk% % % I



-~~ -;2 V- W. UZ- 77-- --

put-value Y

need pf2

0 0 1 0 0 pf2

310 k.

IFETCH

put-vaniablc X 6

need pr.

2 0 0 PfITi-

IFETCH

put-vafiable

need p

0 0 1-0 0 Pc

2 0 1 P

IFEIC5.

%5 5.

putvaiableY .



4%

24 10 fr pfl

IFETCH



switch on constant switch_on_structure

need pf2 need p12

100l o o p1 2 100 ....

dereference AXIC0 derefercnce Ax[O] .

PN

- Nbl.

match not at 
•",

1SFAIL

o_22  :~-. .

p A'

if back to

• co de mad , . .

%61

l]- ~.'.T.
* .'

. 5-%."

, S.

- ~ ~jj /.~ .W~.*.%.5'~~' ~~ ...~ '.~5'. '.~ ~. .. ~ -.- '-



b o

switch-on-terrm

need prZ

WTIZ pf2

dereference AxlOl

pfl'. -

FAIL IFETCH ".

trailI

501 505 -S
% 's.

>= B < B .,

RETURN RETURN

" U..

'.5 5%

"-1"-'-

'U-



trust me else/trust

4 2 0 pfl I~

pf2

IFETCH

ury/tr) me -eIse 
ha0

E <B E >= B

0124 0 2

IFETCH 

V

:. %



unify

I.-.

bid~nb~ 01 1 0 ) PH

AD both~ ar 0 a nete is 0 ovPLdrere

1 0 0

1 0 0 0 Is

qpes not St

push PD
equal~ Con1

FAIL~.' PD r*fl%

bind anabl 1 0 1 0

1 0 0 0 00

traiJ505

IFETCH- IL2

a-. . ....................



.0J

unify-c di

read mode

3 0 wnte mode

cdr set cdr clear

'p

X addreCssing Y addressing0
1 p-2 pflIt

IFETC1 IFETCH

unify constant

read mode wnte mode

3 1 0 3 0 1 pf-

if *S cdr set

decdr IFETCH A

1 0 01 0 0

-%'"
t r a il" 

' 
''  

5 0 5

.:.% ,
9.!

. -. , ,, ,% ..,-. . % - -. . _,.,,, .;, % ..... . .,, ,.,- ,,. .,.,, . . . . ,,. ,. . ..- ,. % .,. , ,,,. -,.,,,,,..,. ,..' , w, ,.,. ,, , % % ,. .. k %
.,.



uni fy-nil

read mode write mode

3 o 3 0 1

dereferertee *S IFETCH 5

*S cdr not set

FAIL UNIF1,

®r,1



unify-value

Y addressing X addressing

dereference Yt derrferenice Xi
mead mode

1 0 0 1 0 0

write mode rnte mode0

21 0

*S cdr bit set

decdr

1 0 0

1 0 0

1 0 0UNIF

1 01 H 0100f

VaT witi9

IFETCH % %

I
'6A

.- , 7,r 27..*. * N ' > % ~ ~ *.", .



unify-variable

write mode read mode

1 03 11 0
cdr bit set

W, bit s
decdr

1 0 0 1 0 0

IFTHIFETCH vat nonvar

dermference * S

0 addr/ \Yaddr

10 pf1 12 O pfl

trail 50

1FETCH IFETCH.

5%

.



.0

unify_void •:

--

.J

%

unyo W

1 0 0 p

rea mod writ rmodode"'-

'%.-

13 0 1 o oxreOal%

traTC505

%.

I 1 0

6- .

0 0 ecr

decdr~~ 1 • IE



3. REGISTER LEVEL SIMULATOR
A register level simulator was used for the debugging of the microcode and for producing input for i..

the gate level simulator. The register level simulator is based directly on the microcode ROM bits. The
ROM bits are compiled into C code which models the behavior of the chip (at the register transfer level).

The result of compiling the ROM is a collection of C functions, one for each microstate, that is called by
the main loop of the register level simulator (see Figure 22). The body of the simulator contains code to
simulate memory, instruction prefetching, and external (host) processing. The simulator also contains code
for statistics gathering, and debugging (single stepping, break pointing, etc.). A very useful feature of the
register level simulator is the ability to produce Quicksim input. This allowed non-trivial programs to be
used for gate level simulation.

A large number of benchmark programs were used for testing the microcode and the chip design. 41

Many of the programs are standard Prolog benchmarks, others are programs developed as part of the
Aquarius research project at Berkeley, and the remainder are small programs written specifically for
exercising various states or branches in the microcode. Because of the large number of programs available, .

only a small number of them were used to generate input for the gate level simulator. This subset of the ,.
benchmarks was carefully chosen to exercise all part,, rf the datapitb and microcode. The fact that the .

step-by-step values of the chip registers and interface pins given by both the gate level and register level
simulators exactly match for this subset indicates that the register level simulator faithfully simulates the .
behavior of the datapath. All other benchmarks were run on the register level simulator and the results
were compared with running these benchmarks on standard Prolog systems (C-prolog and Quintus Prolog).

The gate level simulator used was Quicksim (part of Mentor's IDEA system). This simulator
requires input specifying the logical values of various points in the chip as a function of time. We were "
able to simulate the entire chip by specifying the values on input pins (clock, opcode, and memory data
pins) as a function of time. To run benchmarks on this simulator, the register level simulator was used to '.

produce the necessary input. An example of the Quicksim input is given in Figure 23. A program was
used to filter the output of Quicksim and produced an output file giving step-by-step values of certain regis- 0
ters and output pins (see Figure 24). This output could then be directly compared with the corresponding %
output of the register level simulator. W, %

0 l

:1n.-,

.

AAA" A" .*-



load PLM code

select next ic.ro-tate

calculate new ulP ,--:.

., q -. .

register transfers ,.,.

memnory operations %-z..V

output verification data,:..,

output statisticsate

Figure 22 Block Diagram of the RTL simulator

,0

--... ,,f...,% ,. ., ... ,..,.-,..,.outpu:t. .-,.-.-..ver..ifica.tion.. .,.. , . .,., . ,..d..at..a1.
*:J *



,-.t

### 1 ###
# put-list X1
# boot00
run 100

### 2 ###
# put-list X1 "-"
# bootOl "- .aa

run 100 .P*

### 3 ###
# put-list X1
# initO0
# mrnemread
force MEMDAT Offffc00 65
run 100

### 4 ### N-

# putlist X1
# init0l .

# memread "

force MEMDAT 0ffffclO 65

run 100a

### 5 ### S

# put-list X1
# init02
# memread
force MEMDAT Offfffff 65
run 100

### 6 ###
# put-list X-
# init03
# memread
force MEMDAT OffffeOO 65
run 100

### 7 ###
# put-list Xl
# initC4
# memread
force MEMDAT 00000001 65

run 100

Figure 23 Sample Input to Gate Level Simulator

- - 7*a .,,, = .. j a.- . f . . a"'% "



### 8 ###
# put-jist X1
# init05
# memread
force MEMDAT 00000020 65

run 100

# putist Xl 71
#init06

# memread 0

force MEMDAT 00001000 65
run 100 

%

P

### 10 ###

# put-list Xl
# init07

# memread
force MEMDAT cfffffff 65 "

run 100

### 11 ###
# put-list X1

# initO "

# memread
force MEMDAT 00040000 65

run 100

### 12##'""

# putiist X1
# init09
# memread
force MEMDAT 00080000 65
run 100 -

### 13 ###
# put-list XI
# init1O

memread "
force MENIDAT 00000004 65

run 100

### 14 #### put-list Xl i'

#initl I



# memread
force MEMDAT 0000000f 65

run 100 0'

### 15 ###
# puti.ist Xl
# initl2
# memread
force MEMDAT 00000002 65 "-

run 100 •

### 16 ### 
"

# put-list X1

# init13
# memread
force MEMDAT 00000000 65 0

run 100 ,

### 17 ###
# putilist XI

init14 -

# mernread
force MEMDAT fffffffd 65
run 100

### 18 ###
# put-list Xl
# initl5
# memread
force MEM DAT 000000ff 65
run 100

### 19 ###
# put-list X1
# resetO0
run 100 

### 20 ###
# put-list X1
# re;etOl
run 100

#*s 21 #"'
# put-]I-,, XI
# reset02

-, ..-,-.* -,-. .-,. .;. - '.',..., .,".•. ." "£'.','."v" % " " " " ."" ."v"-" ."". "" , "" '_.-,.,-..i-S '



run 100

##22## ':-

# put-list Xl 1
a# reset03 ,l

run 100

### 23 ###

# put-list X1.'# reset04

# st4prefetch~l)

force OPCODE 00000013 20
force MIENDAT 00000000 35
run 100

### 24 ###
# put-list X1# putt00i'

run 100 :.

##25 ### '.-

# putlist X]
unifv -cdr03"t:

# prefetch, 1)

force OPCODE 00000040 20

force MEMDAT c800005 35

run 100 Ile

### 26 ###
# unifyconstant a

r unifliconstantwrite0
run 100

### 27 ### .

# unifyconstant a.

# unify-constantwrite01 ,l'
# prefetcht1 )
force OPCODE 00000040 20
force MEMDAT c80000b6 35 _

run 100 K'

### 26 "### "d
2S.

# unify constant a

# ifetcho n t

run 100

I.I

r- T. r,$## r ,, 27 ### o ,.Ia•" ' 'r"''l' ' 1 -", °,°. % ' % ''' " " " '



### 29 ###
# unify-constant b
# uniyconstant-wr tO0
run 100 

.e

### 30 ###

# unify-constant b
# unifvyconstantwrite0l
# prefetch l 1
force OPCODE 00000002 20
force MEMDAT ffffffff 35 .

run 100

$## 31 ### S'

# unify-constant b
# ifetch
run 100

### 32 ###
# unify-ni]
# unify.nil-write0O
# prefetch 1
force OPCODE 00000013 20 -/

force MEMDAT 00000001 35
run 100

#33 ### - %" d'

# unify-nil
# unify -nihwrite01 

5

run 100 
*5.

### 34 ###
# unify-nil
# ifetch
run 100

### 35 ###
# put-list X2
# putilistoO
run 100

$## 36 #-

# putilist X2 .-

# unifycdr03
# prefetch' 1 )

*5**5........



bootOO
Memdat =OffffcOO MDR =OffffcOO T =ffffffff

Ti =ffffffff R =ffffffff H =ffffffff S = fffffff N

M AR ffffffff N ffffffff M od e = 2 CC 2

Argl fffffflf Arg2-3 =-1

2
bootOl
Memdat =ffffffff MDR =OffffcOO T ffffffff
Ti =ffffffff R =ffffffff H = ffffffff S =ffffffff
MAR =OffffcOO N =ffffffff Mode = 2 CC 2

Argl =ffffffff Arg2-3 =-1

3S

initOO
me mre ad
Memdat = OffffcOO MDR =OffffcOO T =OffffCOO

Ti =OffffcOO R =fffffftf H =ffffffff S =ffffffff
MAR =OffffcOl N =ffffffff M o de = 2 CC 2

Argi ifffif Arg2-3 -1

init~l
rne mre ad
Memdat = OffffclO MDR OffffclO T =OffffCOO

T I OffffcOO R ffffffff H ffffffff S ffffffff

MAR =OffffcO2 N ffffffff M ode = 2 CC 2

Argi ifffif Arg2-3 =-1

initO2
mne mre ad
Merndat =Offififf MDR Offiffff T =OffffCOO

Ti =OffffCOO R =ffffffff H =ffffffff S =ffffffff
MAR =OffffcO3 N zffffffff Mode = 2 CC = 2

Argl fffffflTAr2-

S6
initO3
rnemread
Memdat =OffffeOO MDR =OffifeQO T =OffffcOO

Ti OffffcOO R =ffffffff H =ffffffff S =ffffffff

MAR =OffffcO4 N =ffffffff Mode 2 CC = 2
Argi ffffffff Arg2-3 =.1

Firp 24, San~ole.Qp.t tQ
%. q t.



Jin 9.

*** 18 *

initl5 ., I
Smemread

Memdat = 000000ff MD000Of ffffc00OO.Ti =OffffcOO R =ffffffff H =ffffffff S =ffffffff

MAR =Offffcl0 N =ffffffff Mode = 2 CC 2
Arg I ffffffff Arg2-3 I -

19
reset00
Memdat = ffffffff MDR = 000000ff T = Offffc00
TI = Offffc00 R = 00000000 H ffffffff S = ffffffff A
MAR = Offffcl0 N = 00000000 Mode = 2 CC 0
Argl ffffffff Arg2_3 = -1

*** 20
reset0l
newpl
Memdat = 00000000 MDR = 00000000 T = OffffcOO
TI = OffffcOO R 00040000 H ffffffff S = ffffffff

MAR =Offffcl0 N =00000000 Mode = CC = 0

Argl ffffffff Arg2_3 = .1

* 23
reset04
prefl
instren
lastmi*
Memdat = 00000000 MDR = 00000000 T = 00040000
TI = 00040000 R = 00001000 H = 00001000 S = 00001000

MAR = 00001000 N 00000000 Mode = 0 CC 0
Argl 00000000 Arg23 = -1

*** 24 *
putilistoo
Memdat = ffffffff MDR 00001000 T = 00040000

Ti = 00040000 R = 00001000 H = 00001000 S = 00001000 I
MAR = 00001000 N = 00000000 Mode = 1 CC 2
Argl = 00000000 Arg2_3 = -1

25
u I i fv cd r03 ii
prefn
instren..



F- fk. 
67-7% ".1- A%. A. ~ ~

lastmi*
Memdat = c80000b5 MDR = 00001000 T = 00040000

TI 00040000 R 00001000 H = 00001000 S = 00001000

MAR 00001000 N 00000000 Mode, = CC 2
Argl =c8000065 Arg2_3 = -

:

unify-constant-writeO00
Memdat = ffffffff MDR = c8O000b5 T = 00001000

TI = 00040000 R 00001000 H = 00001001 S = 00001000

MAR 00001000 N 00000000 Mode = 1 CC 2

Argl c8OOOOb5 Arg2_3 -1

• "* 27 
0 :-

unifyconstant-write0l 
.,-.'

prefl
memwrite :-Z

instren :bT0
Memdat = cSOOOOb6 MDR = c80000b5 T = 00001000

Ti = 00040000 R = 00001000 H = 00001001 S = 00001000 •

MAR = 00001000 N 00000000 Mode 1 CC = 2 ...

Argl = c8OOOOb6 Arg2_3 = -1

* 28 *
ifetch

lastmi*
Memdat = c8OOOOb5 MDR =c80000b5 T 000

TI = 00040000 R = 00001000 H = 00001001 S = 00001000

MAR = 00001000 N 00000000 Mode = 1 CC 2

Argl = c80000b6 Arg2_3 = -1

• 29

unify-constant-writeOO
Memdat = ffffffff MDR = c80000b6 T 00001001

TI 00040000 R = 00001000 H = 000010021 = 00001000

MAR 00001000 N = 00000000 Mode = CC 2,..,

Argl = c80000b6 Arg2_3 .1

• 30 *
unify-conStant-write01-
prefl
memwrite
instren
Memdat = ffffffff MDR c80000b6 T 00001001

Ti 00040000 R 00001000 H = 00001002 S = 00001000 •

4. ~ ' ,* - - . - *'.4.

r "2, ": .:Y~ ..'e '', . : e . £
.

-.", " -" J' ,: , ,. .,T "." ."- ,':." ",. "" " "" "" . -". "" ."" "" . ".'." '."-%''-



.0%

4. SHEETS OF THE DATA PATH
The data path is in several sheets with the control lines and power connected at the top and bottom.

The buses of he data path are connected to the blocks on the sides. A list of microbits is also given. The
microbits are grouped according to the blocks they control. UMir Mird Control €

Constant RAM:
0 0 contobbus
1 1 paddO
2 2 padd I
3 3 padd2
4 4 padd3
5 5 memdattocon

Arg 1:
6 6 pref I
7 7 argl torbus
8 8 arg1tomemdatbus

Arg23:
9 9 pref2
10 10 arg2tobbus
I I 11 arg3tobbus

PDL-left and right:
12 12 pdlcO -
13 13 pdlcl
14 14 pdlc2
15 15 ramwe
16 16 ramcs

ALU:
17 17 s3
18 18 s2
19 19 sl
20 20 sO
21 21 m
22 22 cn

R:
23 23 mdrbustor
24 24 alubustor

25 ldr
25 26 nobbus
26 27 rtorbus 0
27 28 rnomemdatbus

MDR:
28 29 mdrbustomdr
29 30 alubustomdr
30 31 rbustomdr 0
31 32 tlbustomdr
32 33 tbustomdr
33 34 mcmdatbustomdr
34 35 ldmdr

p• - .

i'. , " " W" " , . . . ,€ w" ,-' ." '"" ,"", "" ,---, ' '. ", . . . . . . . .. . -.. ... .... ".wS



35 36 Idmdrtag
36 37 mdrtagsel
37 38 mdrtag30 I
38 39 mdrtag3l%
39 40 otwdr%
40 41 tcdi0
41 42 jtcdr I
42 43 tcdi2
43 44 rndrtomdrbus
44 45 mdrtorbus
45 46 mdrtomemdatbus
46 47 mdriobbus

MAR:
47 48 alubustomar
48 49 rbustomar
49 50 tibustomnar
50 51 tbustomar .,

51 52 Idmar
52 53 marcriteri
53 54 marup
54 55 martomemdatbus*

55 56 diagnostics

Bus Connector:
56 57 tlinbustomemdatbus
57 58 memdatbustotl inbus

TI:
58 59 bbustot I
59 60 Tbustotl
60 61 tI inbustotlI

62 IdtI
61 63 npasstl
62 64 numvaitl
63 65 tlobbus%
64 66 tltoabus

T: 
5

65 67 mdrbustot
66 68 bbustot
67 69 rbustot
68 70 tinbustot
69 71 t Iinbustot

72 Idi
70 73 tcntcn -- t

71 74 tup*
72 75 ripassi .

73 76 numval
74 77 ttomdrbus*
75 78 ttobbuso
76 79 ttoabus*

77 80 mdrbustoh
78 81 rbustoh



79 82 tinbustoh
83 1&b

80 84 hcnien
81 85 hup*
82 86 htollinbus*
83 87 htorbus*
84 88 htotinbus*

85 89 mdrbustos
86 90 bbusto ,

91 Ids
87 92 scnten
88 93 sup*
89 94 stomdrbus'
90 95 stotl inbus*

H2:
91 96 mdrbustoh2
92 97 rbustoh2 r

93 98 tlinbustoh2
99 Ih

94 100 h2cnten
95 101 h2up*
96 10 2 h2totinbus*
97 103 h2totlinbus*

N:
98 104 mdrbuston I. p,

99 105 bbusion 
.V

106 Idn
100 107 ntotinbus
101 108 ntomdrbus

Register File:
102 109 mdrbustoregin
103 110 rbustoregin
104 111 bbustoregin
105 112 Idreg
106 113 adscla0
107 114 adscla I
108 115 adselb0
109 116 adselbi
110 117 regscia00
111 118 regsela0l

112 119 regsela029
113 120 regselb0()
114 121 regsclbO)
115 122 regsclb02
116 123 regtotinbus
117 124 rcgiotlinbus

Collision Mlux:WO
118 125 setcoliion ..

119 126 collision If zero then select TIINBUS cisc TINBUS R

%:4



Microsequencer: r-
120 127 uencfr Usually one, i.e. load curp.

121 128 ldurp

Pselecte:r:

122 129 pctlO
123 130 parll
124 131 pctl2
125 132 pctl3
126 133 unxad8 ""

127 134 unxad7 0

Subroutine ROM:
128 135 forcead0
129 136 forceadl
130 137 forcead2

131 138 unxad6,-
132 139 unxad5 ',A

133 140 unxad4 A

134 141 unxad3
135 142 unxad2
136 143 unxadl

137 144 unxad0

Microprogramcounter Select:
138 145 mctl4
139 146 mctl3
140 147 mctl2
141 148 mctll
142 149 mctlO -

143 150 subrmux If zero then urp else curp 'A

144 151 uldarg .

145 152 Idmode
146 153 mode
147 154 ldcutm
148 155 cut

Interface Signals:
149 156 newpl
150 157 newp2*
151 158 wait
152 159 dspace
153 160 lastmi*
154 161 fail*
155 162 memrcad.
156 163 memwnitc*
157 164 externalfu*
158 165 ttotl inbus* 5

159 166 parity

%

/ .""-'.'



CP.7 avcilclble to DTIIC does not
jai fly legikexpoUt

C - : -z- -Z

=w
TS

R? 1;

C%

j -

C .
- - - C- 

4 %

C : %.

y 
4.

LL C-



-~~~~~ ~ ~ ~~~~~~ Nt-- - - -- -v ., - - - ~ - -- . . . .

cr~~ L r

L_ - I N

D -. L

C,. C

L 0

v-t 7

a CI C- = C C CC

7: ~ ~~ a c - -: -c

I of*. c: lJL

IC ~ - - - - - .r

J, %

PHASE-

Lf)

r



*N %

U')

K.~t I j0

14 -- --

3-14

N" r)Mo

~~d"I b

zz U z -- - -

A~~ S;t I - 16-

c14 U-

w r

IS~CdU~~%%%

tO9]OL-~--- In
(5~3OW ~ oir~gIn

:2v]Odl.J -M

0 Gdn.4t00

r-- r-,-,

C'JCJ Cj *R- 1 - .CW



vrv~~~~ W. -. VCl f

I E91 0811 W EcqflOs I

or 10O 1wc - WC~iG *i dldo

I ( V )O~1Loi
0 6 1 W ~ U AN 110 ~ ~ ~ 6 

-LILE 0 1 W3 C-
E C0 WE:, __klw- inrcwaE I -

-o^, -oncm-m

0E 6C]4 IO5I8 W=- - i -

1 alo-l EE a tuflu-16

II IIW- 1fB

I~ ~ Cc 0z 1 -G

[CE~ 3C1 S m~

m- c r-
m n=2 MC

m =i m a: f c-

Cc 0

a r

w ac

EI Ef F ic

w W



V r~~ ~ ~ ~ ~ ~ K R '. 7 7 7 -7 -7 7 7 T 7

C)~. Ml; 5

C T W

-~% %

-~5 
% 

.- e

ID-

S 108

9 1- e

8OS1N T

19~e a -1w 1S

cc --



E~ E r s3 ~ V tW w

z O

2~ ~ Ic-2. ;

t0 z cz~

Lo

w 0t



p~ %.

C- M-e~ P

~~In
2~ %t

TIN 5'' a N 1i

T~~8S Ii NB1 31

L- I

U!.. C

L.

crS
mt I-



00

I Ir

-~ -L E I
£r -- 1

dc I lI I" ej

-1 1 0 WE n C

I- I 7

N =

La Ln W.LO
m m m ) c

M Nk Z

or or, % Orzo e



~' e %

0. M

~5rT I U

RBJS( 3I: sC

B 3 1

P H S

stee c~ m

C 0 L IS EL X

E CE
TIBL~~~S132:H~ X___ C EE~T~:D P~ T

BB~JS~):C

7h C,

ri~~~~ I SS

MIRDe 15

ri'IRD(153

MIRLIS 152 j _EY



FOR I :- C TO E
PHSE_ -

C, PR2T  1 ) >-3 E X E F'7
FCR. C . , 7-- ' " r

FCF E7 cc V

E>-GE3 M C.F I C 7C Z "---
T""3 1

T 3e-__- ,_,_ _:______, .
S------------

" D R 21 .-

A,- U C f C

K , 1 C 7 C.3

' , ' - ' - S.' .',

.4t_

r-J.-T - F ,~F>~-S v.- _ .

__F _,,_ -I-
, ,',,,c" :

°0



S. SHEETS OF THE MI1CROSEQUENCER

The top level sheet of t~he microsequencer is enclosed along with the details of the micropage select

logic and next microprogramcouflter select logic. The logic equations are derived from a C program.
0

5.1. PAGE SELECT

The logic for this unit is given by the C program shown below.

psel( P, p1, p2 , p3 , p4 )
int P,pl ,p2.p3,p 4 ;

switch( P) •

case 0: return(pl);
case 1 : if(cc ) return(pl ); /* cond < ,/

else return( p2);case 2 : if( cc== 2 ) return( p ); /* cond -- /"
else return( p2);

case 3: if( cc != 0 ) return( p); f * cond <=/
else return( p2);

case 4 : if( XY ) return( pl);
else rturn( p2);

case 5: if( MDR & cdr) return( l );
else return( p2);

case 6: if( mode == read ) return( pl );
else return( p2);

case 7 : if( PDL= 0 ) return( p );
else return( p2);

case 8: switch( type(T))
case tvar :return(pl); 

...

case tstr:
case Lcon:
case fist: return( p2); };

case 9: switch( type( T))
case tvar : return( p);.-
case fist : return( p2 );
case tcon:
case tstr : return( p3); );

case 10: switch( typc( T))
case tvar : return( p );
case tstr : return( p2);
case tcon:
case tlst: return( p3); );

case 11 switch( type( T))
{case icon : return( pl);

case tvar : return( p2);
case fist return( p3); 9.

case tstr: return(p 4 ); ;
case 12: switch( type( T))

{ case tcon :return( pl);
case tstr:
case tvar: ,
case fist : return( p2); 

%; %.'

case 13: if(( type( T ) == tvar ) && (type( TI) tvar)) %
if( cc == I ) return( p2);
else return( p1);'

.-- .9..9.. ,-

p



3%

else if( type( T) == tvar ) return( p1);
else return( p2 );

case 14 : if(( type(T)!=tvar) && (type(Tl)'=tvar)) return( pl ) .1.,

else if(( type(T)==tvar) && (type(Tl)==tvar)) return( p2 );
else return( p3 )% 

h

case 15: if( MDR & tcdr )
if( typc(NDR) tvar ) return( pl);
else return( p2 );

else return( p3 );
default: return(-1); A ;

% . P.6 "

0

-,. .N .

%... J

%.-P*~



-- I

I

-% 0

-W.0,

-L CY

I * ' - - J - - I,__to

* 1i - ~ -_ ____ ----ILI'

-T -. T-

0'_ _ _ __ _ _ 4rI



- - --0-6

.I eS3
- - .\ ...

eeU

£ t i f

SC'It

%ad*

141

ILK--

T1.3c p Pul



%

%.%

5.2. MICROPROGRAMCOUNTER SELECT 6

The logic for this unit is given by the C program shorAn bilow.

rnsel(M, ml, m2, m3, m4)
int M,ml,m2,m3,m4;

switch( hi ){ ae0:retum( ml ); ,
case 0: TIMM
case I : return( m4 );
case 2 : if( NIDR & cutm ) return( ml );

else return( m4 );
case 3: if(( cc != 2 ) && (type(T) == tvar)) return( m3 ); S

else return( m2 );
case 4 : if( cc 2 ) return( m3 );

else return( ml );

I" case 5:*/
case 41 : if( cc - 2 ) return( m4);

else return( ml);
/" case 6:/

case 5: if( cc -= 2 ) return( m3);
else return( m4 );

P case 7:
I' NOTE: m2 really means ml /

case 6: if( MDR & tcdr ) return( m3 );
else return( m2 );

/* case 8:*/
case 7: if((MDR&tcdr)&&((typc(MDR)'=tvar)&& (ty pe(MDR)!=fst)))

retum( m3 );
else return( ml );

/* case 9:/
/0 NOTE: m2 really means ml / S

case 71 : if(( type(MDR) == tvar) && !(MDR&tcdr)) return( m3);
else retum( m2);

P case 10: */
1" NOTE: m2 really means ml / 'K,:

case 72: if(( type(T) == tvar ) && !(MDR&tcdr)) return( m3 );
else return( m2);

/* case I]:*/
case 8 : if(( MDR&tcdr ) && (type(MDR) = tvar))

return( m3 );
else return( m2);

/* case 12: 1/
case 9 : if( cc != 0 ) retum( m2 );

else return( ml);
/* case 13: /

case 10: return( m3 );
/* case 14: */
/0 NOTE: m2 really means ml */

case 11 : if( type( AX[0I ) == tvar ) reum( m3 );
else return( m2);

P case 15: /
/* NOTE: m2 r'ally means ml */

case 12: if( type( AXIargi] ) == tvar ) return( m3 );
else return( m2 );

"..



,d'

"4 % '.

L! A

P case 16: 1
/* NOTE: m2 really means ml */

case 121 : if( typc( AX[arg2] ) == tvar ) return( m3 ); -V
else return( m2 );

/* case 17: /
/ NOTE: m2 really means ml /

case 122 : if( ty)c( MDR ) == tvar ) return( m3 );
else return( m2); - --

/ case 18: */
case 13 : if( typc( T) != type(TI )) return( m3); 4..

else return( m);
/' case 19: */

case 14 : if( cc != 2 ) return( m3 );
else if( PDL == 0) return( m4);
else return( ml );

/* case 20: */
case 15: return( m2 );
dcfault: return(-I ); - ;

%. -'

,0::'

,f.-:.;-

,:.5-..



-J i-Y7W-F-X!7

336q

wlI

c I )C.- 1 - h~t

I~ %T-p

".4.

K I Z54% .%

020

cc* I C)' ]C -

Rqj! I.

SSS
Now.

22'

11(31 6

I 1130 55%,

PDLC>' -

L Ho



A',
6. TIMING DIAGRAMS

The chip has several interface signals to assist system designers. Timing diagrams are included to %
show the interaction between these signals and the external environment. Interfacing the chip to a cache or
a standard bus require an understanding of these timing diagrams. Since the program counter for the

VLSI-PLM is not on chip, any interface to the chip must contain a program counter and logic to do instruc-
tion prefetching and partial decoding.

°%

p - ."Ai"

40

--

.. r

, ./

P 
%

%.- . -.



-, ...

VLSI-PLM Pinout

The pinout of the VLSI-PLM consists of 102 signals described below. These signals are described as -
Input (signals to the VLSI-PLM), Output (signals from the VLSI-PLM), and 1/0 (a bi-directional signal
with high impedance state). In addition, there are 9 VDD pins and 9 GND pins. The chip is packaged in a
168 lead pin grid array (PGA). All control signals must be available by l5ns after the rising edge of
MCLK. All data is assumed to be available during MCLK* following the assertion of the appropriate con-
trol signal except for memory write which is supplied during the next cycle.

MAR<27,.0> (Output) A 28 bit memory address (usually virtual).
DSPACE (Output) The most significant address bit for memory access. DSPACE is I for

access to the Data Space and 0 for access to the Code Space (for Code Space
items to be used as data). This signal and MAR bus forms the memory address
bus.

EXCEPT (Output) A one cycle long status signal indicating that an exception has occurred
on the VLSI-PLM. The cache board generates an interrupt to the host. The
VLSI-PLM supplies the interrupt driver with information on the cause of the
exception by sending the contents of PSW on the MEMDAT bus. There will be
a one cycle delay in communicating the PSW except for collision exception in
which case it is supplied on the next cycle. This signal has the highest priority.
The interface between the VLSI-PLM and the cache board must enforce the
priority of this signal.

MEMeDAT<31..0> (1/0) The primary data path to memory. Memory read/write data to/from the
MDR passes on this bus, as well as instruction arguments to argI, arg2, and arg3
during instruction prefetch; and new values for the P register (either 32 bit or 8
bit for newpl or newp2 respectively).

OPCODE<7..0> (Input) The path for the 8 bit opcode from the prefetch buffer to the instruction
register used during instruction prefetch by the VLSI-PLM.

NTEWPI (Output) A one cycle long control signal to tell the Prefetch Unit that the MEM- -,:e.

DAT bus holds a 32 bit value to reload the P register. %

NEWP2* (Output) A one cycle long control signal to tell the Prefetch Unit that the MEM-,

DAT bus holds an 8 bit value to be added to the P register.
FAIL* (Output) A one cycle long control signal to tell the Prefetch Unit that failure has

occurred and that the prefetch buffer is to be flushed. The Prefetch Unit then
waits for a NEWPI.

MEMREAD* (Output) A one cycle long control signal to request a memory read. At the
beginning of the cycle, the MAR bus has the memory address. The VLSI-PLM
can expect to be able to latch the data from the MEMDAT bus towards the end
of the MCLK* cycle (See the discussion below for more information on clock- 0
ing). If the data is in the write buffer or there is a cache miss the cache board
will stop the VLSI-PLM by freezing MCLK on the high level during the next
cycle.

MEMfWRITE* (Output) A one cycle long control signal to request a memory write. The cache "-
board latches the MAR and MEMDAT busses on the next rising edge of
MCLK. If the signal is asserted during cycle t the data on MAR and MEMDAT •
buses will be latched during the rising edge of cycle t+2.

INSTREN* (Output) A one cycle long control signal to request a transfer of data from the
prcfetch buffer. The data on the MEMDAT bus may be latched during MCLK*.
It is the VLSI-PLM's responsibility to keep track of whether this is a prefetchl
(opcode and argl) or a prefetch2 (arg2 and arg3). The MEMDAT bus should
not be used for other transfers during this cycle.

RESET* (Input) An arbitrarily long but synchronized control signal to the VLSI-PLM to
reset. This signal will load the constant RAM with data from the communica-
tion page of memory (next to last page of data space with a page size of 2K .

= 2,*:,',: , -. V ; - -,v , .. * ..., ..... . .. .,. . -.'



bytes) and initialize the machine registers.

LASTMI* (Output) A one cycle long control signal indicating that the last microinstruction
of a PLM instruction is in execution. That is, end of macro instruction execu- -
Lion.

FORCEBR (Input) A one cycle long control signal to inform the VLSI-PLM to do a forced .... "
microbranch to the address on the FORCEADDR bus.

FORCEADDR<8..0> (1/0) A nine bit bus to transfer the forced microbranch address to the VLSI-
PLM when FORCEBR is asserted and to output the contents of the ROM latch
when OUTROMADDR is asserted.

PRECHARGE (Input) A one cycle long control signal to inform the VLSI-PLM that the
prcharge circuit of the register files and ROM should be enabled.

MCLK/MCLK* (Input) The Master lOOns clock for the VLSI-PLM. The VLSI-PLM may
assume that all data transfer requests (MEMREAD*,MEJfWRITE*, and S
INSTREN*) occur in one cycle. If the cache board is unable to do this, due to a
cache miss or buffer full or empty, MCLK will tick one more time and then stop
with a High level. Once the data is available, MCLK will resume. If both lei
MCLK and MCLK* are supplied then they will be used as phase 0 and phase I
of a two phase nonoverlapping clock.

RLMDR* (Input) A one cycle long control signal to reload the MDR register of the VLSI- O
PLM once data is available for a memory read after a cache miss. MCLK will
resume 150ns after RLMDR* goes away. (Check this since the PLM uses
175ns)

TESTI (Input) A one cycle long control signal to initiate the scan of microinstruction S,
register (MIR) as a part of testing the VLSI-PLM.

TEST2 (Input) A one cyle long contro! signal to initiate the scan of status bits in the .
status unit of VLSI-PLM. %

SHIFrA (Input) Clock for shifting data into the master register of LSSD.

SHIFTINI (Input) Data for the first scan path controlled by TESTI. A at,

SHIFTIN2 (Input) Daw for the second scan path controlled by TEST2.

SHIFTOUTI (Output) Data output from the first scan path controlled by TESTI.

SHIFTOUT2 (Output) Data output from the second path controlled by TEST2.

EXTERNALFU* (Output) A one cycle long control output to the cacheboard indicating that a
builtin function is to be executed by an external functional unit. If this signal
and LASTMI are asserted at the same time then it indicates that the transfer of
all the data to the cachboard for the execution of the external builtin function
has been completed. *-*

OUTMEMDAT (Input) Control signal from the cache board indicating that the 32 pads of the -

MEMDAT bus should be in the output mode. The pads will also be in the output
mode when MEMWRITE*, NEWPI*, NEWP2*, or diagnostics (internal signal)
is asserted. The 32 pads will be in the input mode if MEMREADO, RLMDR*,
or INSTRENO is asserted. If none of the above signals for the input or output is
asserted then the 32 pads will be in high impedance state. This signal is an
asynchronous one. It is provided for reading the contents of the blocks in data ,.-
path during the VLSI-PLM testing or debugging the hardware when MCLK is
frozen in the high level (stays in phase 0) and a microinstruction is shifted into -
the microinstruction register.

WAIT (Output) A one cycle long control signal to the cache board indicating that the
chip is halted (looping on a microinstruction).

OUTROMADDR (Input) A one cycle long control input to tte VLSI-PLM requesting the contents
of the ROM latch to be output on FORCEADDRO - FORCEADDR8 pin,. The

'0

" ,-• - , • .. . 1' " 
' '

. . ' * ' " " "'':r *' . " T .7'-'



next microinstruction address is in the ROM latch. This signal puts the 9 pads
of FORCEADDR in output mode. The 9 pads will be in the input mode when
FORCEBR signal is asserted. If both OUTROMADDR and FORCEBR are not
asserted then the pads will be in the high impedance state.

POWER There are 9 power pins.

GROUND There are 9 ground pins.

IJ
'~ ) '.Y.J

Vee0.-.-•.--.-..,: [
.*' i,
S.-,,

'. ', ,"

.. * ..,.,

,k *rr,

-:.3".S



O

Rev 1 6/25/86
Rev 2 5/30/87

50 ns 50 ns

CMCLK
-so. D ..,

A -A

MCLK*

Phi0

Phil -- _ C _B

5.€

Delay A. External inverter delay. The two are equal if pull up & down times
are the same for the external inverter. (4 ns).

Delay B. Non-overlap time after end of Phil and before start of PhiO. This is
affected by the external inverter delay (5 ns).

Delay C. Non-overlap time after end of PhiO and before start of Phil. This is
affected by the internal driver delay (5 ns).

Delay D Delay of Cache clock to split into MCLK and MCLK* (4 ns). '. '5-., ' .,'.

Rise of PhiO (Phil) is caused by fall of Phil (PhaseD).
Fall of Phi0 (Phil) is caused by rise of MCLK* (MCLK).

.,,.,,..,.,.. ... ... .. .... .. ... -. .- ..- .. .. . . . . .":L:, .,"



Rev 2 7/16/86 V

~ ~M I11~Rev 3 5/30/87
Rev 4 6/02/87

50 ns 50 ns

CMCLK

MCLK
A ,--.-.A -L•

MCLK* --- _ S:?5 "
.% %

PhiO ______

Phil

FORCEBR active high _ _._•(PIN) Ton= 0 - 1,0! ,#

FORCEADD valid force address

ROM ADDR -- ____m_____Latch ________ _____._

La c 4 access 42ns . ..

ROM DATA - -
'-wor

(ROM Latch) __-word_",___ ai cowr

MIR__ _ _ _ _ _,. 
b

Note:
'im' is the mux time delay for selecting the Force Address as the
next micro-address. -.'"
ROM Address is latched in on PhiO. ROM data latch is written in Phil and -4 -'..-

data is valid at end of Phil. MIR latches in the microword in PhiO.
ROM data is available before end of Phil, and stays valid until end of PhiO. . .,

,,:..



F~fArr~nfl~V~If) Rev 1 6/04/87
FO C n A ,C OV Rev 2 6/09/87
(ROM ADDRESS OUT)
50Ons 50Ons "

%.

PhO _______

D-.-

Phil _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

A A.

MCLK*V

(Phi

(PIN) _ _ _ _ _ _ _

% b

FOADDR address ou

ROM - 0R

Cacheboard specs: FORCEBR (from CB) valid in :5l5ns from rise of CMCLK.
When FORCEBR is low, CB expects ROM Address out in ! 54ns.
OUTROMADDR comes from interface board, causes chip to open FORCEADDR
1/0 pads for output and to drive out 9-bit ROM address.
FORCEBR must be low when OUTROMADDR is high.



_Rev 5 5/30/87
Rev 6 6/04/87

CACHE HIT
t 5 5ns 50 ns tl

CMCLK

MOLK

MOLK' .
PhiO__ _ _ _ _

Phil CB_______.

MEMREAD*active low(pin)

from negative edge of MCLK 1

(external latch i cielw%0

DSPACE(PIN) I I valid address bit _________ ____

(external latch) val id addre s t

15

MEMDATBUS- -

cache hit

MDR __________

10 !r.

MEMREAD* signal and address must be available to cache board no later than 2Ons Q
after rising edge of CMCLK to allow sufficient time for stopping clock in the case -4

of a cache miss.

%A~aI



ST' Rev 3 7/24/87 0
E N]PREA DT I M IN GRev 4 5/30/,87

CACHE MISS Rev 5 6/04/87

clok toped Resume clock

0 4 

4

MCLK*

74Phil

MEMREAD* 1 active F(Rom Latch)0

MEMREAD* active
(external latch) 1V o al fM L

OSPACE (PIN) 'N valid addes b1 .

(external latch) -va 'd address bit I I

M ARBUS20

MEMDATBUS\\\vad
(on chip)

Cache Board Specs: when cache-miss occurs, CMCLK is kept from rising :

until data is available. Phil will be high when stopping clock.

%.

IV 'C'd-



Rev 5 6/03/87
NI NAWRITU ij4JI\JH G Rev 6 6/09/87

100 ns 100 ns

CMCLK
A 4- A

MCLK*

PhiO

MEM WRITE' atv o

MEMWRITE* actielo
(external latch)

DSPACE (DFFL. AI ai adrs
(external latchz A\Kvaiadr$ D1

MARBUS ___idaddes

WR~ data ou

rndr->memdalbus

MM TBSrecycle charge rccecag

cycle T 27 .0 cylU'

Cacheboard specs: cycle t, MEMWRITE* valid !52Ons;

cycle t+1, Address valid 52Ons, Memdatbus valid !527 ns from rise of CMCLK. .

%



Rev 3 7/24/86
H V TI N I1\ Rev 4 5/30/87

Rev 5 6/05/87

tW W

MCLX ____

-- o- -0--4-A -
MCLK*

PhiO__ _ _ _ _

Phil ___ ___ ___ ___

NEWP1*
(mmr latch)

NEWP1'

NEWP1*4
(external latch)

MDRtoMEMDA'Fat hg
(MIR)

MDR valid data _______

M EMDATBUS MEOcharge recycling 77

cacheboard 27F
latch__ _ _ _ _ _ _ _ _ __ _ _ ___ _ _ _ _ _

Cache board specs: NEWP1* valid in :52Ons, data from MEMDATBLJS valid
in !527ns (after rise of CMCLK). Data going offchip can also come from R
& CP (Regfile). R -> Memdatbus; CP -> Tlinbus -> Memdatbus (longest
delay). In any case, Memdatbus must be valid :5l5ns after rise of PhIO.



% .% •w"'I

-A~~~~ 'J* 6 '*%XV

E V 2_ I NlI. ill' Rev 3 5130/87
Rev 4 6/09/87

t 50 ns 50 ns t+l

CMCLK __

MCLK*

A " "---4A 4-""

PhiO _JS
-4 No B , ,5

Phil _________B___

-00-5~~~ :1[* -"

-a e owJ

(rom latch) _

NEWP2* active low
(pin) *

Srom in edge of MCLK"
o-.,

NEWP2*acielv
(external latch)

8S

TtoTl INbus actige high
(MIR)

m/s ransfer ',..

T block _ _ _ _ _ _ __ _ _ _ _ _

Tl Nbus
MEMDATbus __ _ K vld data charge recycling

cacheboard -,latch . valid data-.,...

Cache board specs: NEWP2* valid in _20ns, data from MEMDATBUS valid
in _27ns (after rise of CMCLK). T block Master/Slave transfer is done in .

Phasel*. T -> Tlinbus -(bus connector)-> Memdatbus. Memdatbus must
be valid _<15ns after rise of PhiO.

Z<N "N:-.*-i I

,,S



~~1~J T1H~~1~Rev 5 6/04/87
Rev 6 6/09/87

t t+ 1

CMCLK

A A~- A -4- z

PhiD

Phil B

PREFi 5 - active high-

(MIR~)aciehg

(pins) ______e__low

20

OPO ild dala 71 '~\--
(pins)

Opcode Iatc - 8-bil__ opcode supplied I

24 MUN~

Decode 49 7- logic leel b+ RO1dreb____________

Memdatbus -Rvau

ARGi _______

Cacheboard specs: INSTREN' valid in 92Ons after rise of CMCLK. Cacheboard
provides OPOODE and ARGi !58ns after INSTREN* is valid.
Opcode pins and latch are 8-bits. Opcode goes thru Opcode Decode to become
9-bit ROM address (0:8), with bit 3 modified & bit 8 added.



~ ~yJI~jRev 3 6/04/87
Rev 4 6/09/87

t t+ 150Dns 50Ons

CMCLK
DV

MCLJ(

A A 4

MCLK*_ _ _ _ _ _ _ _

PhiO _ _ _ _ _

Phil __ ___113__ _

PR EF25
(MIR) f4-atv hg

Need_ PF2

Opcode latch ___ 1 -bil opcode re ns unchang~ed

Memdatbus -_______________

ARG2/3 4_______
Cacheboard specs: INSTREN* valid in <2Ons after rise of CMCLK. OPCODE and
ARG2/3 from Cacheboard are valid :58ns after INSTREN* is valid.
Least significant 8 bits of Memdatbus go into ARG2, the next 8 bits into
ARG3. (ARG2 & ARG3 both output into the least significant 8 bits of Bbus.



Rev 2 7/22/8-
~ Rev 3 6/09/8

1 OOns I OOns

CMCLJ(

S.C. a_ _ _ c_ _ _ _ _ _ _ _ __e:

CONT.

PASSMVCLIK stopinprcesor___l

MCLX

MCLK*

PhiO0

Phil

Cacheboard Specs: Single Cycle (SC) is valid in cycle t of CMCLK. MCLK
runs 1 more cycle (t+1), then gets stopped (PASSMCLK low). Some
number of cycles later, Continue is active to reactivate MCLK (PASSMCLK
high). SC may also be valid for another single cycle execution.
PASSMCLK must settle well before the rising edge of CMCLK for MCLK to
be stopped and reactivated properly.



IFA NU Mr WU W X-

BW

7civ

Z pp0

%I



~NI~L T T~1Rev 1 6/09/87

100ns 100ns 1OOns

CMCLJ(

S.I. active

CONT._ ____

PASSMVCILI<K

/4/

MCL.K

MCLK*

PhiO

SPhil

LASTMI*.
(Rom latch) active

Cacheboard Specs: Single Instruction (SI) is valid in cycle t of CMCLK.
MCLK runs several more cycles until LASTMI* is low, then gets stopped
(PASSMCLK low). Some number of cycles later, Continue is active to
reactivate MCLK (PASSMCLK high). SI may also be valid for another
single instruction execution. PASSMCLK must settle well before the
rising edge of CMCLK for MCLK to be stopped and reactivated properly.

ppA

- a ..... -. a ,,



.9 ~. M~9 (.~ ~ hYM ~ ~ ~ .,~ ~ ~ ~ -.~. -~ *~P -J& -~ -J. ,-

* -"S j**'~ J*J
-'S'S.'!

**5*~ tJ

___________________ 4'.-. S.- .~,

active ______________

______________ S
stoppin processor cloc

-'5

-'S

S

__________________ ____________________ ____________________ 
**5. 'Spt'S*

*55~)S

0
______________ -. 5%

.5..
'S'S..

__________ S.
.. *&

V.
5"....

* 9.''.

S

5.5*~~

9.

'5..,..

S

~5

P


